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simple example of how to fill holes in one dimension. In higher 
dimensions, the main tasks become to find appropriate directions and 
to fill these directions in the appropriate order. Various methods exist, 
but one of the most popular methods is by Sobol [3], due to its good 
performance in practice [2]. The accuracy of the method scales with  
    �log(n)d� [2], which can significantly improve the accuracy  
compared to     � 1 � in low dimensions d. Furthermore, it is  
possible to randomize Sobol sequences by randomly permuting 
simulated subintervals [2]. This leads to so-called scrambled Sobol 
sequences, which combine favorable properties of random and low-
discrepancy sequences. For example, it allows us to statistically study 
simulation errors. 
 
A P P L I C A T I O N  T O  R I S K - N E U T R A L  V A L U A T I O N  
As a first application, we consider risk-neutral valuation. To this end, 
we start from a financial contract with a pay-off function XT at maturity 
T. The canonical example is a call option on a stock price ST with strike K 
for which the pay-off is given by: XT = max(ST - K,0). In a risk neutral 
scenario all simulated asset prices earn the risk free rate. After 
discounting with factor DT, the asset prices become driftless processes, 
called martingales. As a result, the value VT of self-financing investment 
strategies become martingales after discounting. This leads to the 
following general formula for the initial value V0 of a financial  
contract in terms of a self-financing replicating portfolio:  
V0 = 𝔼ℚ[DT VT ] = 𝔼ℚ[DT XT ]. The first step in this equation uses the self-
financing (martingale) property and the second step uses the 
replicating property: VT = XT. The risk neutral valuation formula can 
numerically be implemented using standard Monte-Carlo techniques by 
simulating discounted pay-offs and taking the sample mean.  
 
We study the convergence of the call option price using the Black-
Scholes-Merton model. The advantage is that this price is analytically 
known, so that we can compare the accuracy of the numerical 
techniques to the exact price. We use a risk-free rate of r = 2%, a 
volatility parameter of σ = 25%, an initial stock price of S0 = 100, a 
strike of K = 105 and a maturity of T = 3 years. The results for the 
accuracy are shown in Figure 2. For each number of scenarios, we 
calculate the option value 50 times to determine the Root Mean 
Squared Error relative to the analytical value. We see that the Sobol 
sequence has much lower error (more than an order of magnitude 
improvement) and converges faster than the standard Monte-Carlo 
sequence. Sobol sequences are therefore often considered best practice 
in quantitative finance applications [2]. The observed accuracy is also 
seen to match the expected theoretical behavior. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: Accuracy of Monte-Carlo and (scrambled) Sobol sequences 
in valuation of a call option. 

 

A P P L I C A T I O N  T O  D E T E R M I N E  C A P I T A L  
As a second application, we consider the determination of capital. For 
the Solvency Capital Requirement (SCR), we require a model for the risks 
that affect the own funds over a one-year horizon. This no longer 
involves the study of self-financing portfolios with martingales, so we 
turn from risk-neutral to real-world scenarios that include drift. The 
SCR is defined by the Value-at-Risk (VaR) at a confidence level of 
99.5%. This means that the probability of the loss L exceeding lSCR  is 
given by 0.5% (ℙ[L>lSCR ] = 0.5%). To obtain the distribution function 
ℙ, we have to perform an integral over the probability density. 
Therefore, Sobol sequences can again be used to improve accuracy. 
 
We study a hypothetical insurer which has a portfolio driven by five risk 
factors with equal exposure. The sum over these risk factors determines 
the total loss. The factors satisfy a multivariate t-distribution with 4 
degrees-of-freedom and a correlation parameter of 0.5 between all 
pairs. The t-distribution leads to heavy tails and tail dependence, so 
that it is suitable for studying capital requirements. Another advantage 
of this example is that the SCR can be calculated analytically. We 
simulate the distribution with random sequences and Sobol sequences. 
The VaR is obtained by sorting the scenarios and taking the 99.5% 
largest value of the loss. The results for the accuracy are shown in 
Figure 3. For each number of scenarios, we have calculated the SCR 50 
times to determine the Root Mean Squared Error relative to the 
analytical value of the SCR. We again see that the (scrambled) Sobol 
sequences have higher accuracy than the standard Monte-Carlo 
approach. In both cases, the observed accuracy matches the expected 
theoretical behavior. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Accuracy of Monte-Carlo and (scrambled) Sobol 
sequences in determining the SCR.  

 
C O N C L U S I O N  
We have studied the application of Sobol sequences in performing 
valuation and determining capital, which is the first core task of the 
actuary. It is possible to achieve higher accuracy with less resources by 
applying Sobol sequences in Monte-Carlo calculations. Another 
advantage is that the implementation only requires applying a 
different set of (quasi-)random numbers, which are readily available in 
most used programming languages. When the required accuracy is 
high, but resources are scarce, these techniques can be of particular 
relevance for insurance companies. ■ 
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According to the Beroepsprofiel Actuaris AG the first 

core task of an actuary is actually a combination of 

tasks, namely to perform valuation and to determine 

capital [1]. In both cases Monte-Carlo simulations play 

an important role [2]. When performing valuation of 

(embedded) options, often risk-neutral simulations 

are used. The expected value of discounted pay-offs 

then determines the market-consistent value. When 

determining the capital with an Internal Model, often 

real-world simulations are used. The 99.5% worst-

case scenario over a one-year horizon then 

determines the capital. An important disadvantage of 

Monte-Carlo is that it converges slowly. There are 

distinct types of approaches to tackle this problem. 

The first approach is to use the ever increasing 

computing power in the cloud to generate as many 

scenarios as possible. The second approach is to look 

for ways to improve convergence speed. In this article 

we discuss the second approach, which is an 

especially suitable approach, when resources are 

scarce.

( Q U A S I )  M O N T E - C A R L O  S I M U L A T I O N   
In Monte-Carlo simulations we use random sampling to estimate the 
quantity of our interest. The name of the method refers to the grand 
casino at Monte Carlo, where random experiments called gambling are 
performed. If we want to know the mean of a random variable, and if 
we are able to simulate that random variable, then we can use the law 
of large numbers to approximate the expected value by the sample 
mean over many simulations. The advantage of this procedure is that it 
is very generally applicable. The disadvantage is that the accuracy of 
the sample mean over independent contributions only improves with 
√

–
n with n the number of simulations. There have been many well-

known variance reduction techniques developed that improve accuracy. 
However, the error reduction typically remains proportional to 1/√

–
n [2]. 

 
Theoretically, if we determine the expected value of a stochastic 
variable, then we need to integrate the outcomes of that variable with 
respect to the probability density. Numerically, we perform integration 
by performing a summation over grid points, where we prefer to choose 
a grid that minimizes error. A random sequence of points is not optimal 
for performing integration, because it can leave large ‘holes’, resulting 
in large errors. This is shown in Figure 1, where the left plot shows the 
points that are used in Monte Carlo simulation and the right plot shows 
the points in a so-called Quasi-Monte Carlo sequence based on the 
method of Sobol [3]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: example of a random number sequence (left plot) and a 
Sobol sequence (right plot). 

 
Quasi-Monte Carlo sequences do not try to mimic randomness, but they 
are rather designed to make the ‘holes’ between grid points as small as 
possible. Therefore, they are also called low-discrepancy sequences. In 
one dimension, such a sequence would start with 1/2, after which 1/4 
and 3/4 would be added, after which 1/8, 5/8, 3/8 and 7/8 would 
added, etc. This is called a Van der Corput-sequence, which gives a 
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