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Figure 1: A diagram showing the two components of a deep neural
network, within which variables are represented with circles and
regression parameters with lines. The network functions in two
components – a ‘feature extractor’ derives new variables from the
data input into the network, and these feed into a linear model
which makes predictions.

T H E  L E E - C A R T E R  M O D E L
Mortality rates and the rates at which mortality rates are expected to
change over time are basic inputs into a variety of actuarial models. A
starting point for setting mortality improvement assumptions is often
population data, from which assumptions can be derived using
mortality forecasting models. One of the most famous of these is the
Lee-Carter (LC) model (Lee & Carter, 1992), which defines the force of
mortality as

log (μx,t ) � ax + bx . kt .

This equation states that the (log) force of mortality at age x in year t is
the base mortality ax at that age plus the rate of change of mortality bx
at that age, multiplied by a time-index kt that applies to all ages under
consideration. Like most mortality forecasting models, the LC model is
fit in a two-stage process. The parameters of the model are calibrated,
and then, for forecasting, the time index kt is extrapolated.

The LC model is usually applied to forecast mortality of a single
population, however, forecasts are often needed for multiple

populations simultaneously. While the LC model could be applied to
each population separately, the period over which the model is fit
needs to be chosen carefully so that the rates of change in mortality
over time correctly reflect expectations about the future. Thus, a strong
element of judgment is needed, which makes the LC model less suitable
for multi-population forecasting.

M O R T A L I T Y  F O R E C A S T I N G  U S I N G  D E E P  L E A R N I N G
Recently, several papers have applied deep neural networks to forecast
mortality rates. This article focuses on the model in our recent paper
(Perla et al., 2020) which applies specialized neural network
architectures to model two mortality databases: the Human Mortality
Database (HMD), containing mortality information for 41 countries, and
the associated United States Mortality Database (USMD), providing
lifetables for each state.

Our goal is to investigate whether, in common with the findings in the
wider machine learning literature, neural networks specialized to
process time series data can produce more accurate mortality forecasts
than those produced by general neural network architectures. We also
want to develop a model that is adaptable to changes in mortality rates
by avoiding the need to follow a two-step calibration process. Thus,
our model directly processes time series of mortality data with the goal
of outputting new variables that can be used for forecasting. Finally,
we wish to preserve the form of the LC model, due to the simplicity
with which this model can be interpreted. 
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Recent advances in machine learning have been

propelled by deep learning techniques, which are a

modern approach to applying neural networks to

large-scale prediction tasks. Many of these advances

have been in the fields of computer vision and

natural language processing, for example, the

accuracy of models built to classify the 14 million

images in the ImageNet database has steadily

increased since 2011 (Papers with Code, 2020).

Characteristically, the models used within these fields

are specialized to deal with the types of data that

must be processed to produce predictions. For

example, when processing text data, which conveys

meaning through the placement of words in a specific

order, models that incorporate sequential structures

are usually used.

Recently, interest in applying deep learning to

actuarial topics has grown, and there is now a body

of research illustrating these applications across the

actuarial disciplines, including mortality forecasting.

Deep learning is a promising technique for actuaries,

due to the strong links between these models and the

familiar technique of Generalized Linear Models

(GLMs). Wüthrich (2019) discusses how neural

networks can be seen as generalized GLMs, that first

process the data input to the network to create new

variables, which are then used in a GLM to make

predictions (this is called ‘representation learning’),

which we illustrate in Figure 1. By deriving new

features from input data, deep learning models can

solve difficult problems of model specification,

making these techniques promising analysing

complex actuarial problems, such as multi-population

mortality forecasting.
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Figure 3: Diagrammatic representation of the convolutional
mortality forecasting model, comprised of three parts. A processing
layer derives new features from matrices of mortality data. These
features are combined with a vector representation of the
categorical data in the feature layer. Finally, mortality predictions
are made in the output layer, which is a GLM.

R E S U L T S
We calibrated this model to the mortality experience in the HMD in the
years 1950-1999 and tested the out of sample forecasting performance
of the model on the experience in the years 2000-2016. Our
benchmarks, against which the model was tested, were the original LC
model, as well as the deep learning model from Richman & Wüthrich
(2019), which is constructed without a processing layer geared towards
time series data. We found that the out of sample forecasts were more
accurate than the LC model 75 out of 76 times, and significantly
outperformed the deep learning model. Residuals from the models are
shown in Figure 4, indicating that while both deep learning models
have better forecasting performance than the LC model, the CNN model
fits the data for males significantly better than any other model. In the
paper, we also show that the CNN model works well on the data in the
USMD without any modifications.
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C O N V O L U T I O N A L  N E U R A L  N E T W O R K S
Here, we focus on the convolutional neural network (CNN) presented in
our paper. A CNN works by processing directly matrices of data that are
input into the network, which could represent images or time series.
We present a toy example of how this works in Figure 2. Data
processing is accomplished by multiplying the data matrix with a
‘filter’, which is a smaller matrix comprised of parameters which are
calibrated when fitting the model. Each filter is applied to the entire
input data matrix, resulting in a processed matrix called a ‘feature
map’. By calibrating the parameters of the filter in a suitable manner,
CNNs can derive feature maps that represent important characteristics
of the input data. See the caption of Figure 2 for more detail.

Figure 2: A toy example of a convolutional neural network. An
image of a ‘2’ is represented by pixel intensities in the data
matrix. The network consists of filters, which are multiplied with
the data matrix to produce a new matrix called a ‘feature map’.
Here, the filter is an edge-detector i.e. when the values of the
feature map are large, a horizontal edge has been identified. This
can be seen in the bottom row of the feature map, where large
values correspond to the base of the ‘2’. Diagram excerpted from
excerpted from Richman (2018). 

D E F I N I N G  T H E  M O D E L
The CNN we apply for mortality forecasting works in a similar manner:
we populate a matrix with mortality rates at ages 0-99 observed over
ten years for each population and gender. This matrix is processed by
multiplying the observed values of mortality rates with filters that span
across the entire age range of the matrix and extend over three years,
as shown in the top part of Figure 3. The filters derive a feature map
that feeds into the rest of the model. 

We also provide the model with variables representing the country
being analysed and the gender of the population. To encode these
variables, we applied a technique which maps categorical variables to
low dimensional vectors called embeddings, in other words, each level
of the category is mapped to a vector containing several new
parameters, specifically, a 5-dimensional embedding layer, shown in
the middle part of Figure 3.

Finally, we use the feature map and the embeddings directly in a GLM
to forecast mortality rates in the next year, in other words, no other
model components process the features before they enter the GLM. This
is represented in the last part of Figure 3, which shows the direct
connection of the output of the network to the feature layer. 
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Figure 4: Out of sample residuals produced by using the LC and
two deep neural network models to forecast mortality rates for the
populations in the HMD.

I N T E R P R E T A T I O N  W I T H I N  T H E  L E E - C A R T E R  P A R A D I G M
Deep learning has been criticised as often being difficult to interpret.
We can provide an intuitive explanation of how the convolutional
model works in the framework of the LC paradigm for mortality
forecasting. As mentioned above, the three sets of features derived
with the neural network – which are features relating to population,
gender and those derived using the convolutional network - are used
directly in a GLM to forecast mortality. We show this mathematically
using simplified notation in the following equation: 

log (μx,t ) � ax + ax + bx . kt ,

which states that the neural network predicts mortality based on new
variables that have been estimated from the data, represented as
variables with a ‘hat’. The first two of these (ax  and ax ) play the role
of estimating the average mortality for the population p and gender g
under consideration, respectively, and in combination are equivalent to
the ax term in the Lee-Carter model. The third of these variables is a
time index derived directly from the mortality data, which is equivalent
to the kt term in the LC model. This time index is calibrated each time
new data is fed to the network, meaning to say, we have eliminated
the two-stage procedure mentioned earlier, of fitting the model and
then producing forecasts through extrapolation.

Thus, the seemingly complex model presented in this article can be
interpreted in terms that are familiar to actuaries working in mortality
forecasting. 

C O N C L U S I O N
We introduce a new mortality forecasting model in this article which
uses a neural network to process mortality data directly to produce
forecasts. The model has a simple interpretation within the framework
of the original LC model and produces forecasts on the HMD with high
out of sample accuracy. The model generalises well indicating that it is
robust for the purpose of population mortality forecasting. Further
investigation could focus on applying the model to insurance portfolio
data, which often span shorter time periods than population data, and
consideration of how uncertainty intervals might be generated. ■
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KLIMAAT
Climate Transition Risk 
– A Quantitative Impact Study 
for ORSA Scenarios

Since the Paris Agreement, climate change is gaining

attention by the day. In the financial sector,

legislative and regulatory bodies are at the forefront

of developments. EIOPA recently published its

Supervisory Convergence plan 2021 stating ‘EIOPA will

be taking step-by-step measures for integrating the

assessment and management of Environmental,

Social and Governance (ESG) risks into prudential and

conduct supervision’. EBA, EIOPA and ESMA have

drafted the Regulatory Technical Standards (RTS)

under the Sustainable Disclosure Regulation (SFDR)

and Klaas Knot (president of DNB) recently told an

audience at Bruegel that ‘for economic

transformation to take hold, you need to have

relative prices that reflect the true scarcity of

economic resources. In this case, by pricing in the

climate cost of greenhouse gas emissions’.

Climate risk at least includes physical risks stemming from changing
climate itself, and changes in investment conditions due to the
transition towards a low-carbon economy (transition risk). In its
research ‘Tijd voor Transitie’ (2016), DNB already indicated a potential
material impact of transition risk for insurers and pension funds. In
this article, we explore this effect further and present a case study
with a practical approach to address and quantify climate change
related asset risks within an ORSA setting. 

Quantification of climate-change related risks faces a major
challenge: The absence of empirical data on which such risk models
are typically calibrated. For transition risks particular, future
development almost exclusively depends on political decisions,
leading to vastly different possible economic trajectories
(‘endogeneity’). The presence of deep uncertainty and strong tail
events further complicates the matter. As a consequence, the
essential ingredient of any quantitative approach towards the
evaluation of climate-related risks has to be a forward-looking
valuation based on established climate change scenarios.

The general approach1 upon which this case study is based follows 
the conceptual framework of the CLIMAFIN-methodology by Battiston
et. al.2. While recent regulatory opinions and guidelines were taken
into account, our particular focus lies on an effective implementation.
Our approach is divided into 3 steps, with the construction of a
suitable climate risk scenario as a preparatory step.

1. Translation of a given climate risk scenario into shocks on 
quantitative economic KPIs, such as profit margins, market shares
or growth prospects.

2.Using the shocks on the economic KPIs as input for appropriate 
asset valuation methods to obtain shocks on relevant risk factors.

3.Aggregation of risk factor shocks to portfolio level, possibly taking 
into account second-order effects from indirect holdings via,
e.g., financial institutions.
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