
TECHNIEK

Leveraging LLMs for Code
Conversion in Finance:
Best Practices and Challenges

48 de actuaris december 2024
vaardigheden

This article explores how LLMs can be leveraged for

code conversion in finance.

B A C K G R O U N D
In the finance sector, there is a trend to convert models and code from
one language to another, amongst others due to the following reasons:

• Productivity gains: enhancing and improving current workflows with

new implementations that can further automate tasks, can lead to
efficiency gains.

• Improve maintainability: existing codebases can become difficult to
maintain and finding developers with expertise in languages that
have become less popular can be challenging.

• Performance boost: due to increasing demands on the existing
systems a performance boost might be required.

• Quality boost: the quality of existing code and models might not
meet modern standards.

B Y B R A M J O C H E M S

B. Jochems is partner at Risk at Work and helps clients in the
areas of quantitative finance, data science and IT.

With advancements in natural language processing (NLP), large
language models (LLMs), such as GPT-4, have shown promise in aiding
code conversion tasks. The LLMs perform well in the direct translation of
relatively simple code (e.g. scripts). This article explores how LLMs can
be leveraged for code conversion in finance, focusing on three key
areas: handling non-direct translations, addressing data integration
challenges, and dealing with lack of unit tests.

Throughout our discussion, we'll highlight best practices and potential
limitations to consider when employing LLMs in your code conversion
projects. For non-direct translations, a code example is given. More
examples are given in the accompanying working paper1.

N O N - D I R E C T T R A N S L A T I O N S
A challenge in code conversion is translating code that has no direct
equivalent in the target language. This often occurs when dealing with
language-specific features or specialized libraries. Consider this SAS
code that performs linear regression with forward selection of
explanatory variables:

Exhibit 1: SAS code for linear regression with forward variable
selection.

Proc Reg data=CleanedData outest=ADJRSQ_summary;
 Title 'Adjusted R-Squared - Training data';
 model TARGET_AMT=
 log_INCOME
 No_Income
 [Some variables omitted for brevity]
 URBANCITY_HU /selection = FORWARD AIC VIF BIC MSE groupnames= 'EDUCATION' 'JOB' 'CAR_TYPE';

 output out=ADJRSQ_out pred=yhat residual=resid ucl=ucl lcl=lcl cookd=cook
 covratio=cov dffits=dfits press=prss;
run;

1 – See Jochems (2024), Code conversion using LLMs, working paper.

49de actuaris december 2024
vaardigheden

2. The bad: There is no guarantee that the regression and forward
selection algorithm that are being used will lead to the same
outcome. For the regression algorithm, there might be
implementation differences that cause (numerical) difference.
Similarly, there could be differences in the implementation of
optimization measures that could cause different variables to

Exhibit 2: LLM translated python code for regression with forward variable selection.

def forward_selection_custom(X, y) -> list[str]:
 initial_features = []
 remaining_features = list(X.columns)
 best_features = []

 while remaining_features:
 criterion_candidates = []
 for feature in remaining_features:
 X_selected = X[initial_features + [feature]]
 model = sm.OLS(y, X_selected).fit()
 criterion_candidates.append((feature, model.aic))

 best_candidate = sorted(criterion_candidates, key=lambda x: x[1])[0]

 if best_candidate[1] < model.aic:
 # Code omitted for brevity
 ...
 else:
 break

 return best_features

def run_regression(X, y):
 selected_features = forward_selection_custom(X, y)
 X_selected = X[selected_features]
 model = sm.OLS(y, X_selected).fit()
 return model, selected_features

Translating this to Python requires implementing the forward selection
algorithm and handling the various output statistics. Here's how an LLM
might approach this translation:

When considering the quality of the translation, some observations can
be made:

1. The good: the LLM has done a decent job of implementing its own

forward selection regression algorithm, without the input prompt
specifying that this was required.

VERENIGINGSNIEUWS
N I E U W E L E D E N
C.C.W. Lutz MSc AAG (Cas)
E.R. Dimitrova AAG (Ekaterina)
A. Koletsos AAG (Ariadne)
F. van der Meer AAG (Feddrick)
G.M. Tulling AAG (Gideon)
S.W. Lubben AAG (Stijn)
C.C. Chen (Andres Chen)
S. Welles (Shariva)

F.M. Polman MSc AAG (Fabian)
J.H.F. Linssen AAG (Julius)
J.P.M. Witschge AAG (Jan)
mr. drs. H. Yaqoubi AAG (Hasib)
R. Timmermans MSc AAG (Robert)
S.R.A.J. Nijmeijer MSc AAG (Steffan)
A. Lalatovic AAG (Aleksandra)
drs. A.E. Schilstra AAG (Annelore)
K. Wittekoek AAG (Kim)
M.V. Kamburova MSc AAG (Martina)
V.J. Gu MSc AAG (Valentine)
B.O.B. de Ruijter (Bob)
M.P.J. Smolenaers MSc (Mark)
mr. M. Khrichef (Moncef)

per 1 oktober

per 1 november

Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid student
Lid student

Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid AAG
Lid student
Lid student
Lid student

AGenda

Kring van Gepensioneerde
Actuarissen
16 januari l IFRS 17 en Solvency II
in de praktijk l Johan de Witt huis
(Utrecht)

Kijk voor meer informatie over de
bijeenkomsten van het AG in de
online agenda:

9 S T U D E N T E N O N T V A N G E N D I P L O M A
A C T U A R I A L M A T H E M A T I C S & R I S K M A N A G E M E N T
Vrijdag 15 november 2024 ontvingen negen studenten hun diploma Actuarial Mathematics &
Risk Management. Tijdens de feestelijke bijeenkomst in Kasteel Woerden reikte Mariët van den
Berg, directeur van het Actuarieel Instituut, de diploma's uit. Hartelijk gefeliciteerd allemaal!

De geslaagden
Ferd Banning, Leonie Beers, Zaïdi Davelaar, Wen Korrel, Michael van der Kroon, Elisa Schotanus,
Darlisa Serberie, Denise Wierdsma en Pascal van Wijk.

Karima Attrach (opleidingscoördinator Actuarieel Instituut), Ton Peper (docent Actuarieel Instituut),
Leonie Beers, Pascal van Wijk, Elisa Schotanus, Wen Korrel, Ferd Banning, Noud Marquinie (docent
Actuarieel Instituut) en Denise Wierdsma.

50 de actuaris december 2024
vaardigheden

enter. Both are issues that could or could not really matter,
depending on the specific application.

3. The ugly: the SAS code has a particularity that isn’t included in the
translation. This is the part that specifies “groupnames …”. This
essentially tells SAS that these are categorical variables (meaning
that they have values in a few categories instead of numerical
values) and how the model should deal with those. This feature is
completely missing in the Python code.

Best Practice: Iterative Refinement
When dealing with non-direct translations like this SAS to Python
conversion, it is best practice to use the LLM-generated code as a
starting point. Then, iteratively refine the code with domain expertise.
In this case, you might need to adjust the forward selection algorithm
to more closely match SAS's implementation, deal with categorical
variables or add additional diagnostic statistics that are important for
your specific use case.

In addition, LLMs can also generate tests using so-called mocks. What
this does is essentially replacing part of the code with pre-generated
outcomes. This is for example especially useful for testing if the
regression model implementation differs between SAS and Python,
without the results being influenced by the outcomes of the variable
selection.

Limitation: Domain-Specific Knowledge and Edge Cases
LLMs may struggle with highly specialized financial models or
proprietary libraries. In our SAS example, the LLM didn't fully
implement all the options specified in the original code. With further
iterative refinement, this can be improved.

Moreover, even though it may seem that LLMs generate good test cases,
they could also be subtly wrong, even when the code looks good at first
glance. It's important to review and supplement the generated tests
with domain-specific test cases that reflect real-world usage of your
models.

By combining LLM-generated code with rigorous testing and domain
expertise, you can ensure that your converted code not only replicates
the functionality of the original but also keeps the robustness required
for financial applications.

C H A L L E N G E S O F I N T E G R A T I N G C O D E I N T O E X I S T I N G
S Y S T E M S
Beyond function conversions, integrating new code into pre-existing
architectures presents additional challenges, especially in finance
where systems often use specialized frameworks like Object-Relational
Mappers (ORMs).

A common challenge arises when moving from systems that handle
data with tables or dataframes (such as R or SQL) to those using ORMs
(e.g., SQLAlchemy for Python or Entity Framework for C#). LLMs may
convert the logic but might not account for database schema details or
query optimizations crucial for performance.

Best Practice: Context Awareness
To improve the translation, we can provide the LLM with context
about our ORM setup, model relationships, and project conventions.
With this context, the LLM could produce a more appropriate
translation.

Limitation: Performance Considerations
While the context-aware translation is more aligned with the
project's structure, it's crucial to note that ORMs can sometimes
generate suboptimal SQL, especially for complex queries. For instance,
if this query is performance-critical, one might need to add indexing
hints or partitioning strategies that are specific to your database
system.

U N I T T E S T I N G
Unit testing, i.e., the act of testing small components of functionality
in isolation, is fundamental to ensuring high-quality
implementations, helping to pinpoint functionality issues and
document expected behaviour. However, in practice, many financial
models brought to production often lack comprehensive unit tests.
LLMs can play a crucial role in addressing this gap.

LLMs can assist in generating unit tests for both the original code and
the target language implementation. This capability is particularly
valuable when dealing with models developed in Excel, SAS, R, or
Python that lack existing unit tests.

When converting code, LLMs can not only translate the logic but also
generate corresponding unit tests to ensure the results remain
consistent across both languages. By auto-generating these
functional tests, LLMs reduce the manual overhead needed for
verifying that the converted code remains consistent with the original
version.

Best Practice: Comprehensive Testing
When using LLMs for code conversion, it's crucial to generate unit
tests for both the original and converted code. This approach helps to
ensure that the functionality stays consistent across languages.
Tolerance-based testing can be used to account for minor
discrepancies in floating-point arithmetic between languages.

Limitation: Test Coverage
While LLMs can generate basic test cases, they may not cover all edge
cases or complex scenarios specific to your financial models. It's
important to review and supplement the generated tests with
domain-specific test cases that reflect real-world usage of your
models. These tests can be generated manually, or be generated
through additional prompting.

C O N C L U S I O N
LLMs present a powerful tool for accelerating code conversion in
finance, offering solutions for common problems in practice, such as
unit testing, non-direct translations, and data integration
challenges. However, their effective use requires a balanced approach
that combines automated conversion with human expertise. By
following best practices such as iterative refinement, comprehensive
testing and providing context to LLMs, financial institutions can
leverage these tools to modernize their technology stack more
efficiently. At the same time, it's crucial to be aware of limitations
around test coverage, domain-specific knowledge, and performance
optimization.

As LLM technology continues to evolve, its role in code conversion and
software development is likely to expand, offering even greater
possibilities for streamlining financial technology operations.
However, the key to success will always lie in combining the power of
AI with human expertise and domain knowledge. ■

Iterative refinement for

AI assisted coding
AIHuman

Proposed

code, tests

Code

request

Review

based on

domain

knowledge

51de actuaris december 2024
verenigingsnieuws

