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Abstract

This thesis assesses the existence of a climate transition risk premium in U.S. equity
and corporate bond markets. For this, I construct a novel index of climate transition
risks using textual analysis and deep learning techniques. The findings of this thesis
indicate a statistically significant climate transition risk premium. The existence of
this risk premium is a more recent phenomenon since little evidence for this risk
premium is found before 2012. Furthermore, to investigate how climate transition
risks affect the return series of different industries, I use the quantile-on-quantile
method by Sim and Zhou (2015). This approach reveals that climate transition risks
not only have a negative impact on the return series of industries commonly believed
to be at large risk due to a transition to a more sustainable economy, such as oil and
petroleum industries, but also such risks negatively impact different manufacturing
and consumer goods industries. Green assets, however, appear to react positively
under such circumstances and can thus be seen by investors as vehicles to serve as safe
havens against the financial impact of the climate transition.
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1 Introduction
This thesis assesses the existence of a climate transition risk premium in U.S. equity and
corporate bond markets. For this, I construct a novel index of climate transition risks using
textual analysis and deep learning techniques inspired by the Economic Policy Uncertainty Index
created by Baker, Bloom, and Davis (2016). This thesis provides evidence for a statistically
significant climate transition risk premium in U.S. equity markets and long-term and short-term
bond markets. The existence of this risk premium is a recent phenomenon, with no significant
climate transition risk premium existing before 2012. Instead, most evidence for this risk
premium stems from the period between 2012 and 2022. This climate transition risk premium is
consistent with the general intertemporal hedging hypothesis by Merton (1973), which entails
that investors are willing to accept reduced returns on assets that serve as effective hedges against
risks associated with unfavorable changes in the investment opportunity set.

Furthermore, to deeper investigate how climate transition risks affect the return series of different
industry portfolios, I make use of the quantile-on-quantile (QQ) approach developed by Sim and
Zhou (2015). This approach reveals that not only industries that are most commonly associated
with being at risk from the climate transition, such as the oil and petroleum sector, but also
companies in the manufacturing and consumer goods industries see decreased returns in periods
of increased climate transition risks. This finding has important risk management implications for
the investment strategies of financial institutions such as banks and insurance companies.
However, this thesis also finds evidence of green investment funds seeing increased returns in
times of extreme climate transition risks, indicating a potential role fur such assets to serve as
hedges or safe havens against climate transition risks.

As stated, this thesis uses textual analysis and deep learning techniques to create an index of
climate transition risks. Using a Bidirectional Long Short-Term Memory (BiLSTM) neural
network allows me to accurately label a large number of historical news articles from major media
outlets as to whether or not they signal a tightening of climate policy. These articles are
subsequently aggregated and used to generate the index used in this thesis. Furthermore, to
discover the existence of climate risk premia, I make use of portfolio sorts. As shown by Bali,
Engle, and Murray (2016) and Cattaneo, Crump, and Wang (2022), portfolio sorts can be seen as
a two-step non-parametric estimator of the significance of asset-pricing factors that is able to
discover potential non-linear relations between returns and asset-pricing factors. Additionally, to
discover the nuances in the relationship between climate transition risks and the returns of
various asset classes, I make use of the quantile-on-quantile (QQ) approach developed by Sim and
Zhou (2015). This approach combines quantile regression and non-parametric estimation in the
form of local linear regression.

I also find evidence for a negative contemporaneous correlation between changes in my climate
transition index, excess stock and bond market returns, and the Industrial Production Index (IP),
which measures macroeconomic activity. I also find some evidence that my climate transition
index has predictive power of future excess stock and bond market returns. This finding further
suggests that climate transition risks have asset pricing implications.

Previous investigations into the existence of climate-related risk premia in equity or bond markets
in various economies have led to mixed findings. Similarly to me, Alessi, Ossola, and Panzica
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(2019) and Bolton and Kacperczyk (2021) find evidence for a significant risk premium in E.U. and
U.S. equity markets associated with firm-level CO2 emissions. Additionally, Faccini, Matin, and
Skiadopoulos (2021) find evidence for a significant risk premium associated with climate transition
risks in U.S. equity markets, Bansal, Kiku, and Ochoa (2016) find evidence for temperature risks
carrying a sizable premium in U.S. equity markets, and Huynh and Xia (2021) report the
existence of a negative risk premium associated with climate change news in general in U.S.
corporate bond markets. However, in contrast to my findings for U.S. corporate bond markets,
Bats, Bua, and Kapp (2023) did not find a significant risk premium associated with climate
transition risks for the European Union, and Kennett, Diaz-Rainey, Biswas, and Kuruppuarachchi
(2021) did not find a significant risk premium associated with climate transition risks in New
Zealand equity markets in contrast to what I find for U.S. equity markets. Furthermore, the
potential for green assets to serve as hedges or safe havens for climate transition risks that I find
is in accordance with findings by authors such as Cepni, Demirer, and Rognone (2022).

In summary, I first construct a novel index of climate transition risks using textual analysis and
deep learning techniques. Subsequently, I use this index to discover whether a climate transition
risk premium in U.S. equity and both long-term and short-term bond markets exists by using
portfolio sorts. This approach reveals that a climate transition risk premium has emerged only in
recent years, with no significant climate transition risk premium existing before 2012. Instead,
most evidence for this risk premium stems from the period between 2012 and 2022. I confirm the
existence of a climate transition risk premium by additionally making use of the method by Bali
and Engle (2010) using the Dynamic Conditional Correlation (DCC) model by Engle (2002) to
seek whether the conditional covariation between assets and the climate transition factor induces
a risk premium. As a final robustness check, I also follow Brogaard and Detzel (2015) by making
use of factor-mimicking portfolios and Fama-MacBeth regressions. Additionally, I investigate how
climate transition risks affect the return series of different industries using quantile-on-quantile
regression. This method uncovers that the negative impact of the transition to a more sustainable
economy is not limited to the return series of industries commonly believed to be at large risk due
to a transition to a more sustainable economy but also various other industries. However, green
assets appear to react positively under such circumstances and can thus be seen by investors as
vehicles to serve as safe havens against the financial impact of the climate transition.
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2 Background & Previous Research
This thesis comes in light of the growing interest in the effects of climate change on financial
markets and the economy in general. Other authors have already extensively documented that
climate change significantly impacts the economy. These include Dell, Jones, and Olken (2012),
who find that increasing temperatures substantially reduce economic growth and growth rates
while at the same time reducing agricultural output, industrial output, and political stability in
less developed countries. Likewise, Burke, Hsiang, and Miguel (2015) find economic productivity
to be a non-linear function in temperature for all countries and that unmitigated climate change
can reshape the global economy, reducing global average incomes and increasing global income
inequality. Also, authors such as Bansal et al. (2016) report that global warming significantly
negatively affects asset valuations and that temperature risks carry a negative price. In addition,
Bolton and Kacperczyk (2021) discover that companies with greater carbon emissions exhibit
increased returns in the stock market, which cannot be attributed to existing risk factors. This
suggests that investors may already be seeking compensation for the potential risks associated
with exposure to carbon emissions.

Many authors have previously focused on the physical risks of climate change in the form of
extreme climatic and weather events such as droughts, extreme heat, hurricanes, tornadoes, or
wildfires. Such physical effects of climate change warrant the intervention of policymakers to
counteract climate change. However, such interventions unavoidably lead to new policy-related
climate transition risks, attracting various researchers’ attention to this new avenue in which the
climate can affect the economy. It is of the utmost importance for financial institutions such as
banks or insurance companies to consider the consequences of such climate transition risks. These
risks may manifest themselves in the form of liability risks, such as reputational damage, or in the
form of regulatory risks, such as fines or sanctions by regulatory bodies. Furthermore, climate
transition risks can also manifest themselves in the form of investment risks. Moving towards a
more sustainable economy can lead to considerable shifts in firms’ asset values that financial
institutions may have on their balance sheet due to their exposure to climate transition-related
risks. Such factors illustrate why financial institutions have a clear-cut incentive to consider
climate transition risks in their business operations and investment strategies.

In recent years, various factors have led to increased pressure on policymakers to take action to
address climate change. These include the near-unanimous consensus among climate scientists on
human-caused global warming as illustrated by Cook, Oreskes, Doran, Anderegg, Verheggen,
Maibach, Carlton, Lewandowsky, Skuce, Green et al. (2016) and IPCC (2013), and the growing
increase in public awareness of environmental issues, with most Americans now thinking the
government should be more proactive in counteracting climate change (Tyson, Kennedy, and
Funk, 2021). Further contributing factors are the increasing prevalence of extreme weather events
UNISDR et al. (2015) and factors such as the current ongoing global energy crisis.

However, despite this, climate transition risks have not led to a constant tightening of climate
transition risks due to various factors. These include political factors due to some political leaders
denying or underestimating the effects of climate change and economic factors such as placing
more importance on short-term economic gains than long-term environmental goals. Additionally,
factors such as lacking international coordination may prevent the implementation of further
climate change-related legislation due to disagreements between countries over the distribution of
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costs and benefits concerning international cooperation to counteract climate change.

These developments raise the question of whether the effects of climate transition are priced in
financial markets. The existence of such a climate transition risk premium has far-reaching
consequences for financial institutions such as banks and insurance companies. If a substantial
risk premium is present, it motivates institutions to create suitable risk management tools and
strategies to obtain a desired level of exposure to the financial consequences of the climate
transition. Furthermore, the existence of a climate transition risk premium may also prompt
regulators such as the DNB or ECB to mandate further the incorporation of the effects of the
transition to a more sustainable economy in stress tests and ORSAs. A timely discovery of the
existence of a climate transition risk premium may thus enable financial institutions to both
measure and price climate transition-related risks accurately, which makes it possible to adjust
their risk appetites and build resilient portfolios while at the same time being better prepared for
increased regulatory scrutiny.

This thesis sets out to combine and expand on several different strands of current economic
literature. The first area that this thesis expands on is the creation of a novel index of climate
transition risk via textual analysis. Some important works in economic and financial research that
make use of such an approach are Engle, Giglio, Kelly, Lee, and Stroebel (2020), who have
created an index that measures innovations in the news about climate risk, and Baker et al.
(2016), who have created an index that measures economic policy uncertainty. Authors such as
Gavriilidis (2021) and Basaglia, Carattini, Dechezleprêtre, and Kruse (2021) later extended upon
the work of Baker et al. (2016) by creating indices of climate policy uncertainty. This thesis
expands on the current literature by incorporating deep learning techniques to accurately
distinguish between news articles that signal a further tightening of climate policy.

Secondly, this thesis investigates the existence of a climate transition risk premium in both U.S.
equity and bond markets. Previously authors such as Alessi et al. (2019), Bolton and Kacperczyk
(2021), Faccini et al. (2021), Bansal et al. (2016), Huynh and Xia (2021), Bats et al. (2023) and
Kennett et al. (2021) find mixed evidence of the existence of climate change-related factors in
equity and bond markets for various economies.

The third contribution is further investigating the potential of various asset classes to serve as a
hedge or safe haven against climate transition risks. For this, I use the quantile-on-quantile (QQ)
approach developed by Sim and Zhou (2015). The QQ approach combines quantile regression and
non-parametric local linear regression. This approach makes it possible to unravel the nuances in
the relationship between climate transition risks and the returns of various asset classes.
Previously authors such as Ullah, Zhao, Amin, Syed, and Riaz (2023) and Zhu, Chen, Ren, Xing,
and Hau (2022) have applied this approach to investigate the relationship between Economic
Policy Uncertainty and stock market returns under different policy and stock market
circumstances.
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3 Construction of Climate Index

3.1 Background & Introduction
As stated, to investigate whether climate transition risks are priced in the cross-section of asset
and bond returns and to investigate nuance features in the relationship between various asset
returns and climate policy, it is first necessary to create an index that measures environmental
policy pressure over time. To this end, I follow an approach similar to Baker et al. (2016) and
Basaglia et al. (2021), who have constructed Economic Policy Uncertainty (EPU) and Climate
Policy Uncertainty (CPU) indices.

The construction of the indices by Baker et al. (2016) and Basaglia et al. (2021) begins by
searching ten of the largest U.S. newspapers for economic and policy uncertainty articles. These
ten newspapers are USA Today, the Miami Herald, the Chicago Tribune, the Washington Post,
the Los Angeles Times, the Boston Globe, the San Francisco Chronicle, the Dallas Morning News,
the Houston Chronicle, and the Wall Street Journal. Next, these articles are aggregated on a
monthly and newspaper-wise basis and subsequently divided by the total number of articles in a
newspaper during that same month to account for changes in the number of articles published in
a given newspaper in that same period. Furthermore, Baker et al. (2016) normalize the resulting
series to have a unit standard deviation for each newspaper. The final index is found by summing
the resulting series for each newspaper to obtain a multi-newspaper index and re-normalizing this
index to have an average value of 100 over the entire period.

This thesis deviates from the work of authors such as Basaglia et al. (2021) by, instead of focusing
on environmental policy uncertainty, directly focusing on tightening climate transition policy. To
this end, I use a Bidirectional Long-Short Term Memory (BiLSTM) neural network to label news
articles to determine whether or not they indicate a tightening of climate policy. A BiLSTM is a
type of recurrent neural network that has the ability to process sequential data in both forward
and backward directions concurrently. This entails that the model can more accurately capture
the context of a word in a sentence since the meaning of a word can be influenced by the
surrounding words. Additionally, due to BiLSTM containing memory cells that have the ability
to hold on to information for possibly long periods of time, BiLSTM can model long-term
dependencies from the input sequence, which makes it a powerful tool for text classification
purposes when the exact meaning of words may depend on other words that are far apart.
Previously, authors such as Wang, Cai, Wang, Li, and Wang (2020), Deng, Cheng, and Wang
(2021), and Trueman, Kumar, Narayanasamy, and Vidya (2021) have applied BiLSTM for news
article classification.

3.2 Data Processing and BiLSTM Model

Architecture & Construction
Concretely, the process of creating the index used in this thesis begins by collecting all news
articles related to environmental protection published in ”The New York Times”, ”USA Today”,
”The Wall Street Journal” and ”The Washington Post” from January 1995 until December 2022
from the Factiva database. Subsequently, I read all 2338 articles stemming from ”USA Today”
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and manually labeled them, corresponding to whether or not they indicate a further tightening in
climate transition legislation. Finally, I use these articles to train a BiLSTM to label the articles
from the other three newspapers.

The first step involved in this process is prepossessing the manually labeled articles. In this step,
the news articles are stripped of stop words and punctuation, all characters are converted to
lowercase, and the text is tokenized into individual words. Furthermore, lemmatization is applied
to reduce the vocabulary size, reduce noise in the text data, and improve the generalization of the
model. Lemmatizing words entails the reduction of inflected forms of a certain word to the base
form. Next, with the tokenized words, a dictionary of unique words in the text data is created,
and each word gets assigned a unique integer index. Next, to ensure that all input sequences are
the same length, I pad the input sequences with zeros to make all sequences the same length as
the largest input sequence. Finally, I randomly split the data into training and test sets.

The next step is to create word embeddings using a pre-trained GloVe embedding model
developed by Pennington, Socher, and Manning (2014). The pre-trained word embeddings with
GloVe (Global Vectors for Word Representation) are obtained by training on large corpora of
text, such as Wikipedia, and are designed to capture the statistical properties of words by
examining the co-occurrence statistics of words to capture the semantic and syntactic
relationships between words. The central idea of GloVe is that words that frequently occur
together should have similar embeddings, which is achieved by using a co-occurrence matrix that
counts the number of times each word appears with every other word in the corpus. Next, a
global word-word co-occurrence matrix that captures the overall distribution across the corpus is
constructed using this co-occurrence matrix. Subsequently, this matrix is factorized to obtain
word embeddings, and the resulting embedding can capture both global and local co-occurrence
statistics of the words in the corpus.

Subsequently, it is now possible to build the BiLSTM model. After trial and error, I have decided
to make use of a simple model architecture consisting of an embedding layer, a Bidirectional
LSTM layer with dropout, a dense layer, and an output layer. This architecture is shown in
Figure A1. This choice for a simpler architecture results from the simple model’s relatively good
performance, not warranting a more complex model that can lead to an unnecessary increase in
training time and computational resources, a decrease in interpretability, and an increased chance
of overfitting.

Each previously assigned word index is assigned to the corresponding word embedding in the
embedding layer. Next, the Bidirectional LSTM layer processes the input sequences in both a
forward and a backward direction. It combines the output of both directions to generate a
sequence of hidden states. Here, additionally, dropout is applied to prevent overfitting. This
entails that a random fraction of the neurons is set to 0 at each training step, reducing
interdependencies and promoting the learning of more robust and generalized representations.
This dropout effectively removes the contribution of those values to subsequent computations in
the network, simulating the absence of that information and introducing a form of noise.
Subsequently, the dense layer applies a linear transformation to the hidden states to create a
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sequence of output vectors. Finally, the output layer applies a sigmoid activation function to the
output vectors to generate the final probability distribution over the two classes, indicating
whether an article signals a tightening of climate policy.

The next step is compiling the model by specifying the loss function, optimizer, and evaluation
metrics. In this case, I make use of binary cross-entropy as the loss function, Adam (Adaptive
Moment Estimation) by Kingma and Ba (2017) as the optimization algorithm to update the
weights of the BiLSTM and accuracy as the evaluation metric. The binary cross-entropy loss
function measures how dissimilar the predicted and true probabilities of the target variable are.
This loss function is given below in Equation (1).

L(y, ŷ) =
1

n

N∑
i=1

−(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (1)

In Equation (1), y is the true label equal to 0 or 1 depending on whether an article signals
increased climate policy, and ŷ is the predicted probability. This formula penalizes the model for
making incorrect predictions with a high probability of the wrong class.

The Adam optimizer that is used can adapt the learning rate of each weight based on historical
gradient information and simultaneously prevent the learning rate from quickly becoming too
small by using an exponentially decaying average of past gradients. Furthermore, Adam uses a
moving average of the past squared gradients to normalize gradient updates and prevent the
optimization process from being dominated by a single feature. Empirical results by Kingma and
Ba (2017) show that the Adam algorithm works well in practice.

With the model compiled, it is possible to train the model on the training data. For each epoch,
the loss on the training data is computed using the binary cross-entropy loss function that
measures the model’s performance on the training data, and the model weights are updated
accordingly. At the same time, the performance of this model is separately evaluated on the
validation set. The updated weights are subsequently used as a basis for the next epoch. To
prevent overfitting, this process continues for succeeding epochs until the evaluation loss stops
decreasing for ten successive epochs. Finally, the weights of the best-performing model are stored.
Figure A2 shows the loss for the training and test set over successive epochs, and Figure A3
shows the corresponding accuracy of the model on the training and test set.

3.3 Climate Index
Next, this best model is used to make predictions for the unlabeled news articles belonging to
”The New York Times”, ”The Wall Street Journal”, and ”The Washington Post”. Subsequently,
the articles predicted to signal an increase in climate change legislation are aggregated based on
the newspaper and the publication month and year. Following Baker et al. (2016), these articles
are subsequently divided by the total number of articles published in that newspaper in that same
period to account for changes in the number of articles published over time. Additionally, each
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newspaper’s obtained series is normalized to have a unit standard deviation. Finally, these three
indices are summed to obtain a multi-newspaper index. They are also subsequently re-normalized
to have an average value of 100 over the entire period from 1995 to 2022. Figure 1 shows the
resulting series.

1996 2000 2004 2008 2012 2016 2020 2024

50

100

150

200

250

Figure 1: Climate Index

It is noticeable in Figure 1 that the climate transition index peaks as expected at several
important events. The first such event occurred when the index peaked in the summer of 1996.
The Second Conference of the Parties (COP-2) to the United Nations Framework Convention on
Climate Change was held in Geneva during this period. Subsequently, in the late 1990s and early
2000s, the lack of interest in the effects of climate change led to reduced coverage related to
climate legislation resulting in the index reaching its lowest recorded values.

Next, similar to what Gavriilidis (2021) finds for his index, my index records a peak in June of
2001 when President Bush released a statement on climate change. In the following years, the
index remained relatively low until around 2006. During this period, several noticeable events
occurred. First, in May 2006, ”An Inconvenient Truth” was released, drawing attention to climate
change’s effects. Furthermore, in 2007, the Energy Independence and Security Act of 2007 was
introduced in Congress and the Senate. This act aimed to promote energy efficiency, renewable
energy development, and reduce dependence on foreign oil by establishing new standards for
vehicle fuel economy and appliance efficiency, among other provisions.

The aftermath of the Global Financial Crisis may have caused a shift in public and media focus
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toward direct economic recovery and financial issues in the following years. As a result, climate
change may have received less attention during this period as other concerns took priority. This is
reflected in the climate index, shown in Figure 1, decreasing in the years after 2008. Furthermore,
in November and December of 2015, the Paris Agreement was drafted that aimed to limit global
warming. This resulted in a peak in the climate transition index.

Also, the index increased in the lead-up to the 2016 Presidential Election but seemed to decrease
after Donald Trump’s election, who pledged to reverse many existing instances of climate change
legislation. However, during 2020 in the lead-up to the 2020 Presidential Election and the
aftermath of Joe Biden’s election, the index increased significantly. This signaled a shift towards
a more proactive and ambitious approach to climate legislation in the United States, focusing on
renewable energy, environmental justice, and international cooperation.
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4 Asset Pricing Implications of
Climate Policy

This section sets out to answer whether climate legislation proxied by the index of Figure 1
influences risk premia and whether or not it is priced in the cross-section of stock and corporate
bond returns. Following Brogaard and Detzel (2015), I set out to answer this question by making
use of the Intertemporal Capital Asset Pricing Model (ICAPM) by Merton (1973). As authors
such as Brogaard and Detzel (2015) state, ICAPM suggests that expected excess returns should
vary based on sensitivities to shocks in state variables that predict investment opportunities. If
climate transition risks negatively impact investment opportunities, a negative relationship
between an asset’s excess return and its sensitivity to shocks in climate transition risk is expected.

I will start this section by introducing the ICAPM framework of Merton (1973). Subsequently, to
examine the potential impact of climate transition risks on investment opportunities, following
Brogaard and Detzel (2015), I investigate the relationship between changes in my Climate
Transition Index and contemporaneous excess stock and bond market returns and macroeconomic
activity. Subsequently, I continue by examining the forecasting power of my index for both
macroeconomic activity and excess returns. This section concludes by directly investigating
whether climate transition risks command a risk premium in stock and bond markets. I do this
by making use of portfolio sorts. I confirm my results by investigating whether my results hold up
when separately considering the different newspapers used in the construction of the Climate
Transition Risk Index and by making use of the method by Bali and Engle (2010) using the
Dynamic Conditional Correlation (DCC) model by Engle (2002) to seek whether the conditional
covariation between assets and the climate transition factor induces a risk premium. As a final
robustness check, I also follow Brogaard and Detzel (2015) by making use of factor-mimicking
portfolios and Fama-MacBeth regressions.

4.1 ICAPM
The following overview of ICAPM is based on a lecture by Cochrane (2016) and on the book by
Cochrane (2009). ICAPM is an extension of CAPM that is able to incorporate the stylized fact of
the predictability of returns. When returns, rt, are forecastable via a state variable for investment
opportunities, xt, it is implied in continuous time that returns follow the dynamics given in
Equation (2), where Zt is a Brownian motion.

drt = µ(xt)dt+ σ(xt)dZt (2)

Under this framework, increases in xt will increase returns, as positive changes in xt signal
increased investment opportunities. As Boons (2016) remarks, three of the most commonly used
state variables affecting the investment opportunity set in the literature are dividend yields, the
default spread, and the term spread. Consequently, given current wealth, increases in xt will
cause consumption ct to increase, and marginal utility, u′(ct), will fall, provided that u(ct) is a
monotonically increasing function, as is assumed here. Thus under ICAPM, news on state
variables will affect marginal utility and, consequently, needs to be an additional factor.

12



Hence, the value function, which is the maximized value of some utility function, V (Wt, xt), will
depend both on wealth and on the set of state variables xt. The value function is given in
Equation (3).

V (Wt, xt) = max Et

∫ ∞

s=0
eδsu(ct+s)ds s.t. Wt, xt (3)

Equation (3) states that an investor will seek to maximize utility, u(ct), given current wealth and
investment opportunities. Furthermore, Equation (4) shows the wealth dynamics.

dWt = (Wt · µ(xt)− ct)dt+Wt · σ(xt)dZt

= µW (xt)dt+ σW (xt)dZt
(4)

Next, the discount factor Λt is defined in Equation (5).

Λt = g(ft, t) = e−δtu′(ct) (5)

Subsequently, it is possible to express marginal utility in Equation (5) in terms of factors that
determine consumption, namely Wt and xt, via the ”envelope theorem” as is done in Equation (6).

∂V (Wt, xt)

∂Wt
=

∂u(ct)

∂ct
(6)

This theorem states that at an optimum, the happiness obtained by saving and consuming a unit
of currency should be equal. Subsequently, the discount factor can be written as in Equation (7).

Λt = e−δtu′(ct) = e−δtVW (Wt, xt) (7)

In Equation (7), VW is the partial derivative of the value function with respect to wealth.
Consequently, making use of Ito’s lemma results in the expression given in Equation (8).

dΛt

Λt
= −δdt+

WtVWW

VW

dWt

Wt
+

VWx

VW
dxt + 0.5 · VWWW

VW
d[W ]t

+ 0.5 · VWxx

VW
d[x]t +

VWWx

VW
d[x,W ]t

= −δdt+
WtVWW

VW

dWt

Wt
+

VWx

VW
dxt

+ 0.5 · (VWxx · σ2

VW
+

VWWW · σ2
W

VW
)dt+

VWWx · σW · σ
VW

dt

(8)

Here, the second derivative terms are not fully worked out, considering that they will cancel out in
the pricing equation given in Equation (9) due to them being dt terms and thus appearing in rft .

13



Et(dr
i
t)− rft dt = −Et(

dΛt

Λt
drit)

= (−WtVWW

VW
)Et(

dWt

Wt
drit) + (−VWx

VW
)Et(dxtdr

i
t)

= A Et(
dWt

Wt
drit) +B Et(dxtdr

i
t)

(9)

Here A = (−WtVWW
VW

) is the elasticity of marginal value with respect to wealth and can be referred

to as the coefficient of relative risk aversion. B = (−VWx
VW

) is a coefficient reflecting state variable
aversion. Since, in the remainder of this thesis, I work in discrete time due to the discrete nature
of the Climate Transition Index, which is only updated monthly, it is convenient to discretize
Equation (9). This discretization, which Cochrane (2009) notes is common in empirical work, is
carried out in Equation (10).

Et(r
i
t+1 − rft ) = A Covt(r

i
t+1,∆Wt+1) +B Covt(r

i
t+1,∆xt+1), (10)

Furthermore, this can be reformulated as in Equation (11).

Et(r
i
t+1 − rft ) = A Covt(r

i
t+1, r

m
t+1) +B Covt(r

i
t+1,∆xt+1) (11)

Equation (11) states that investors receive higher expected returns as a reward, both for taking
on systematic market risks and for taking on risks that are associated with unfavorable changes in
the investment opportunity set. Consequently, as Brogaard and Detzel (2015) state, investors
exhibit greater demand for assets that act as hedges against adverse shifts in the probabilities of
future returns on the market portfolio. This increased demand drives up the prices of these assets
and subsequently lowers their expected returns. Furthermore, as Cochrane (2009) states, Equation
(9) leads to multiple linear discount factor models, as shown in Equation (12) and Equation (13).

mt = a+ b′ft (12)

E(mtr
e
t ) = 0 (13)

As Cochrane (2009) states, the factors, ft, are state variables for an investor’s consumption
portfolio decision. These factors thus include current wealth and other state variables that capture
the conditional distribution of future asset returns or changes in the investment opportunity set.

4.2 The Relation Between Climate Transition Risks,

Excess Returns & Macroeconomic Activity
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Next, I investigate whether climate transition risks are an additional state variable that captures
changes in the investment opportunity of future asset returns or changes in the investment
opportunity set. As Cochrane (2009) notes, many authors commonly misuse the ICAPM
framework as a ”fishing license” to justify possible factors. One of the potential ways that
Cochrane (2009) proposes to safeguard from this issue is to investigate whether
investment-opportunity-set state variables have the ability to forecast returns or macroeconomic
activity. To this end, I will explore the relation between my measure of climate transition risks
and both contemporaneous and future returns and macroeconomic activity. Here, I make use of
excess returns of the S&P 500 Index and S&P 500 Bond Index for return series, and following
Boons (2016), I make use of the Chicago Fed National Activity Index (CFNAI) and Industrial
Production Index (IP) as measures of macroeconomic activity.

The CFNAI aligns with the economic activity index formulated by Stock and Watson (1999). As
stated by the Federal Reserve Bank of Chicago (2023), this index is a weighted average of 85
previously existing monthly economic activity indicators stemming from four broad categories:
production and income, employment, personal consumption and housing, and sales, orders, and
inventories. The CFNAI is constructed to have an average value of 0 and a standard deviation of
1. Positive values of this index correspond to economic activity growth above the trend, and
negative values correspond to growth below the trend growth. Figure A4 shows the CFNAI
between 1995 and 2022.

The Industrial Production Index is a monthly index published by the U.S. Federal Reserve Board.
This index measures levels of real output in the manufacturing, mining, electric, and gas
industries. The Federal Reserve Board (2023) indicates that as these sectors substantially
influence the fluctuations in national output throughout the business cycle, the Industrial
Production Index effectively captures significant structural developments within the economy.
Figure A5 shows the Industrial Production Index between 1995 and 2022.

4.2.1 Relation with Contemporaneous Excess Returns &
Macroeconomic Activity

I begin by investigating the relationship between climate transition risks and contemporaneous
excess returns. Following Brogaard and Detzel (2015), I make use of the expression shown in
Equation (14).

yt = α+ β ·∆CTIt + γ′ ·∆Xt + ϵt (14)

In Equation (14), yt refers to either log excess return of the S&P 500 Index or S&P 500 Bond
Index or indices of macroeconomic activity. In addition, ∆CTIt indicates changes in the Climate
Transition Index. Furthermore, ∆Xt denotes changes in several standard economic state variables
previously used by Brogaard and Detzel (2015). These are the VXO, the term spread, the default
spread, RREL, and log(D/P ). VXO is the implied volatility series on the S&P 100 index
measuring economic uncertainty. Furthermore, the term spread is the spread between 3-month
and 10-year Treasury bonds, and the default spread is the spread between AAA and BAA
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corporate bonds. Finally, RREL is the three-year U.S. Treasury Bill yield minus its twelve-month
rolling average, and log(D/P ) is the smoothed log dividend-price ratio on the S&P 500 Index,
where D represents the 12-month rolling sum of dividends.

4.2.1.1 Stock Returns

Tables 1, 2, and 3 show the coefficients corresponding to the different state variables from
Equation (14) when excess stock market returns are used as the dependent variable, both for the
entire period considered between 1995 and 2022 and for the sub-periods between 1995 and 2012,
and between 2012 and 2022. The corresponding heteroskedasticity- and autocorrelation-consistent
Newey, West et al. (1987) standard error p-values are reported in brackets.

Control (1) (2)

∆ClimateIndex -0.006 (0.016) -0.005 (0.043)
∆V XO -0.031 (0.000)
∆Term -0.002 (0.853)
∆Default -0.010 (0.199)
∆RREL 0.006 (0.653)
∆ log(D/P ) 0.005 (0.706)

Table 1: Parameter Estimates Contemporaneous Stock Returns 1995-2012

Control (1) (2)

∆ClimateIndex -0.001 (0.732) -0.003 (0.445)
∆V XO -0.036 (0.000)
∆Term -0.007 (0.589)
∆Default -0.004 (0.628)
∆RREL 0.001 (0.966)
∆ log(D/P ) 0.000 (0.995)

Table 2: Parameter Estimates Contemporaneous Stock Returns 1995-2012

Control (1) (2)

∆ClimateIndex -0.011 (0.002) -0.007 (0.020)
∆V XO -0.029 (0.001)
∆Term 0.015 (0.454)
∆Default -0.028 (0.018)
∆RREL 0.023 (0.119)
∆ log(D/P ) 0.026 (0.254)

Table 3: Parameter Estimates Contemporaneous Stock Returns 2012-2022
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As seen in Table 1, when considering the entire period between 1995 and 2022, changes in the
climate index are at a 5% significance level correlated with decreases in excess returns. This is the
case, irrespective of controlling for different state variables. However, when examining Tables 2
and 3, it becomes apparent that this relation depends on the inclusion of more recent years since
Table 2 shows that this relation between changes in the climate index and contemporaneous
excess stock returns is not significant for the subperiod between 1995 and 2012.

4.2.1.2 Bond Returns

Next, Tables 4, 5, and 6 show the coefficients corresponding to the different state variables from
Equation (14) when excess bond returns are used as the dependent variable, both for the entire
period considered between 2003 and 2022 and for the sub-periods between 2003 and 2012, and
between 2012 and 2022. Due to limited data availability, with only data from the S&P500 Bond
Index starting from 2003 being available to me, only data from 2003 until 2022 can be used in
this section.

Control (1) (2)

∆ClimateIndex 0.001 (0.637) 0.005 (0.430)
∆V XO -0.003 (0.028)
∆Term -0.021 (0.001)
∆Default -0.001 (0.821)
∆RREL -0.006 (0.514)
∆ log(D/P ) -0.006 (0.324)

Table 4: Parameter Estimates Contemporaneous Bond Returns 2003-2022

Control (1) (2)

∆ClimateIndex 0.003 (0.231) 0.003 (0.261)
∆V XO -0.005 (0.243)
∆Term -0.021 (0.020)
∆Default 0.001 (0.836)
∆RREL 0.001 (0.962)
∆ log(D/P ) -0.002 (0.805)

Table 5: Parameter Estimates Contemporaneous Bond Returns 2003-2012

17



Control (1) (2)

∆ClimateIndex -0.003 (0.077) -0.003 (0.096)
∆V XO -0.004 (0.014)
∆Term -0.021 (0.029)
∆Default -0.004 (0.416)
∆RREL -0.017 (0.118)
∆ log(D/P ) -0.012 (0.214)

Table 6: Parameter Estimates Contemporaneous Bond Returns 2012-2022

As seen from Table 4, contrasting to the findings from excess stock market returns, changes in the
climate index are not significantly correlated with contemporaneous excess bond returns, both
when controlling for state variables and when not. When examining Tables 5 and 6, it is
noticeable that this is caused by the first sub-period between 2003 and 2012, as shown by Table 5.
However, if only the later sub-period between 2012 and 2022 is considered, it can be seen that
changes in the Climate Transition Risk Index are again negatively correlated with excess bond
returns, albeit only at a 10% significance level.

4.2.1.3 Macroeconomic Activity

Tables 7, 8, and 9 show the coefficients corresponding to the different state variables from
Equation (14) when the Chicago Fed National Activity Index is used as the dependent variable.
Likewise, Tables 10, 11, and 12 show the coefficients when the Industrial Production Index is used
as the dependent variable. Again, I conduct this analysis for the entire period and the two
different sub-periods.

Control (1) (2)

∆ClimateIndex -0.012 (0.706) -0.037 (0.159)
∆V XO -0.060(0.408)
∆Term 0.125 (0.151)
∆Default -0.304 (0.000)
∆RREL 0.152 (0.083)
∆ log(D/P ) -0.091 (0.000)

Table 7: Parameter Estimates Contemporaneous CFNAI 1995-2022
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Control (1) (2)

∆ClimateIndex -0.020 (0.895) -0.009 (0.832)
∆V XO -0.218 (0.284)
∆Term -0.058 (0.773)
∆Default -0.666 (0.136)
∆RREL 0.150 (0.590)
∆ log(D/P ) -0.281 (0.182)

Table 8: Parameter Estimates Contemporaneous CFNAI 1995-2012

Control (1) (2)

∆ClimateIndex -0.032 (0.326) -0.061 (0.059)
∆V XO -0.012 (0.739)
∆Term 0.108 (0.001)
∆Default -0.265 (0.000)
∆RREL 0.162 (0.000)
∆ log(D/P ) -0.073 (0.000)

Table 9: Parameter Estimates Contemporaneous CFNAI 2012-2022

Tables 7, 8, and 9 show that changes in my measure of climate transition risks do not seem to be
significantly correlated with changes in the CFNAI. Only when considering the sub-period
between 2012 and 2022 there appears to be a significant negative correlation at a 10% significance
level. However, this significance disappears when controlling for the other economic state
variables.

Control (1) (2)

∆ClimateIndex -3.169 (0.000) -32.589 (0.000)
∆V XO -3.115 (0.005)
∆Term 1.534 (0.131)
∆Default 8.345 (0.000)
∆RREL 2.112 (0.039)
∆ log(D/P ) -9.51 (0.000)

Table 10: Parameter Estimates Contemporaneous Industrial Production Index 1995-2012
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Control (1) (2)

∆ClimateIndex -2.062 (0.110) -31.128 (0.000)
∆V XO -3.332 (0.011)
∆Term 1.958 (0.093)
∆Default 9.052 (0.000)
∆RREL 0.686 (0.528)
∆ log(D/P ) -12.19 (0.000)

Table 11: Parameter Estimates Contemporaneous Industrial Production Index 1995-2012

Control (1) (2)

∆ClimateIndex -4.067 (0.000) -33.826 (0.000)
∆V XO -1.113 (0.311)
∆Term 1.016 (0.266)
∆Default 7.349 (0.000)
∆RREL 2.700 (0.032)
∆ log(D/P ) -8.526 (0.000)

Table 12: Parameter Estimates Contemporaneous Industrial Production Index 2012-2022

Finally, Table 10 shows that changes in my measure of climate transition have, over the entire
time period, a significant negative correlation with the Industrial Production Index. This is again
largely driven by the last sub-period between 2012 and 2022, considering that Table 11 shows
that the coefficient corresponding to changes in the climate index just falls short of being
significant at the 10% significance level between 1995 and 2012. Meanwhile, Table 12 shows again
that for the period between 2012 and 2022, the coefficient for changes in climate transition risks is
highly significant. This indicates that changes in the climate transition index are
contemporaneously correlated with a measure of macroeconomic activity, suggesting that climate
transition risks affect investment opportunities.

4.2.2 Log Dividend Growth

Next, following Brogaard and Detzel (2015), I will test whether changes in my measure of climate
transition risks affect future dividend growth. Previously, I have found that changes in my index
are associated with decreases in current stock and bond market returns. Basic financial theory
states that as asset prices can be seen as discounted expected future cash flows, this price drop
can be explained by either negative changes in expected future cash flows or changes in discount
rates. Previously, authors such as Lee, Wang, and Thinh (2023) and Heo (2021) have documented
that exposure to climate-related risks can affect future cash flows. Similarly to Brogaard and
Detzel (2015), I will test whether changes in my index of climate transition risks impact future
dividend growth and, thus, cash flows. To investigate this, I make use of Equation (15).

∆dt,t+h = α+ β ·∆CTIt + γ′ ·Xt + ϵt,t+h (15)
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In Equation (15) ∆dt,t+h stand for log dividend growth over months t to t+ h− 1. ∆dt is

calculated as log(Dt)− log(Dt−1) and ∆dt,t+h =
∑h

i=1∆dt+i−1. Furthermore, Tables 13, 14, and
15 show the results from running the regression of Equation (15) while using VXO, the term
spread, the default spread, and RREL as additional controls both for the entire period and for
sub-periods.

Control 1 Month 3 Months 6 Months 12 months

CLIMATE 0.001 (0.244) 0.001 (0.307) 0.002 (0.415) 0.003 (0.462)
VXO -0.005 (0.035) -0.017 (0.018) -0.030 (0.030) -0.045 (0.118)
TERM 0.004 (0.212) 0.013 (0.119) 0.025 (0.066) 0.037 (0.055)
DEFAULT -0.002 (0.342) -0.005 (0.383) -0.005 (0.668) -0.003 (0.909)
RREL -0.000 (0.494) -0.001 (0.595) -0.001 (0.742) -0.000 (0.913)

Table 13: Log Dividend Growth on Climate with Controls 1995-2022

Control 1 Month 3 Months 6 Months 12 months

CLIMATE 0.001 (0.131) 0.001 (0.429) 0.002 (0.506) 0.003 (0.654)
VXO -0.007 (0.164) -0.020 (0.167) -0.039 (0.156) -0.069 (0.240)
TERM 0.002 (0.751) 0.007 (0.616) 0.010 (0.707) 0.011 (0.832)
DEFAULT 0.000 (0.988) 0.002 (0.886) 0.008 (0.786) 0.016 (0.772)
RREL -0.000 (0.374) -0.001 (0.362) -0.003 (0.304) -0.005 (0.411)

Table 14: Log Dividend Growth on Climate with Controls 1995-2012

Control 1 Month 3 Months 6 Months 12 months

CLIMATE 0.000 (0.797) 0.001 (0.704) 0.001 (0.818) 0.003 (0.668)
VXO -0.005 (0.099) -0.015 (0.062) -0.030 (0.066) -0.042 (0.206)
TERM 0.005 (0.209) 0.014 (0.152) 0.030 (0.063) 0.036 (0.093)
DEFAULT -0.003 (0.212) -0.008 (0.223) -0.011 (0.425) -0.014 (0.602)
RREL -0.000 (0.491) -0.000 (0.796) 0.000 (0.938) 0.001 (0.879)

Table 15: Log Dividend Growth on Climate with Controls 2012-2022

Tables 13, 14, and 15 show that changes in the Climate Transition Risk Index do not affect future
dividend growth for all different time horizons. This finding suggests that, similarly to what
Brogaard and Detzel (2015) find for economic policy uncertainty, that price drops associated with
increases in the Climate Transition Index can be explained by higher expected returns leading to
expected dividends being discounted at a higher rate.
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4.2.3 Forecasting Excess Returns & Macroeconomic Activity

Next, like Brogaard and Detzel (2015), I continue by investigating whether climate transition
risks, as proxied by my index, have the ability to forecast excess returns or macroeconomic
activity. Here I use the same variables as previously and again consider several different time
horizons. Concretely, I estimate the expression shown in Equation (16).

yt,t+h = α+ β · CTIt + γ′ ·Xt + ϵt,t+h (16)

When excess stock and bond market returns are considered, the dependent variables denote the
log excess returns during months t+ 1 through t+ h, which can be computed by summing the
different log excess returns. However, following Boons (2016), when the Industrial Production
Index is used as the dependent variable, I make use of Equation (17).

yt,t+h =

h∑
s=1

log(
IPt+s

IPt+s−1
) (17)

Likewise, when the CFNAI is used, the dependent variable is calculated as in Equation (18).

yt,t+h =
h∑

s=1

CFNAIt+s (18)

Before continuing with the forecasting tests, it is important to recall the general negative sign
found when considering the relation between changes in my measure of climate transition risks
and contemporaneous returns and macroeconomic activity. Previously, authors such as Campbell
and Yogo (2006) and Stambaugh (1999) have noted that variables that, in addition to showing
this negative contemporaneous relation, are also highly persistent, can lead to forecasting bias.
This forecasting bias can, in turn, lead to incorrect inference when testing the existence of
predictability. To this end, I first test whether my index is stationary. I do this by making use of
an Augmented Dickey–Fuller test to test the null hypothesis of a unit root being present.

Control (1)

Test Statistic -4.575
p-value 0.000

Table 16: Augmented Dickey–Fuller test
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Table 16 shows the test statistic and corresponding p-value of this Augmented Dickey–Fuller test.
Since the corresponding p-value is close to 0, it is possible to reject the H0 of a unit root being
present and conclude that the climate transition index is stationary.

Despite persistence not being a significant issue, following the example of Brogaard and Detzel
(2015), I still take this bias into account. Similarly to them, I do this by making use of Hodrick
(1992) standard errors. As Brogaard and Detzel (2015) state, these standard errors both account
for conditional heteroskedasticity and the specific error structure resulting from overlapping time
series. Authors such as Hodrick (1992) and Ang and Bekaert (2007) have shown that also in the
presence of persistent regressors like dividend yields, as documented to be persistent by Koijen
and Van Nieuwerburgh (2011), these standard errors show preferable statistical properties in
comparison to Newey et al. (1987) standard errors. Namely, in such cases, Newey et al. (1987)
standard errors often result in excessively rejecting the null hypothesis of no predictability.

4.2.3.1 Stock Returns

Tables 17, 18, and 19 show the coefficients corresponding to the different state variables from
Equation (16) when excess stock market returns are used as the dependent variable, both for the
entire period between 1995 and 2022 and for the sub-periods between 1995 and 2012, and between
2012 and 2022. Here, I consider four different time horizons, namely, 1 month ahead, 3 months
ahead, 6 months ahead, and 12 months ahead.

Control 1 Month 3 Months 6 Months 12 months

CLIMATE 0.478 (0.033) 0.746 (0.122) 1.052 (0.193) 1.165 (0.363)
VXO -0.863 (0.010) -3.577 (0.000) -3.543 (0.000) -2.440 (0.034)
TERM -0.368 (0.109) -0.333 (0.586) 0.389 (0.680) 0.238 (0.855)
DEFAULT -0.097 (0.772) -0.574 (0.549) -5.320 (0.000) -12.402 (0.000)
RREL -0.119 (0.568) -0.336 (0.515) 0.046 (0.961) 0.310 (0.870)
log(D/P ) 0.774 (0.005) 0.666 (0.351) 2.018 (0.100) 2.933 (0.088)

Table 17: Parameter Estimates Forecast Excess Stock Returns 1995-2022

Control 1 Month 3 Months 6 Months 12 months

CLIMATE 0.066 (0.947) 0.482 (0.443) 0.567 (0.425) 0.163 (0.793)
VXO -1.249 (0.069) -4.320 (0.000) -3.150 (0.012) -4.023 (0.000)
TERM -0.341 (0.543) -1.572 (0.079) -1.948 (0.100) 1.228 (0.285)
DEFAULT 1.138 (0.399) 1.063 (0.485) -5.064 (0.001) -7.741 (0.000)
RREL -0.820 (0.045) -2.311 (0.007) -3.765 (0.001) -6.857 (0.000)
log(D/P ) -0.088 (0.900) -2.796 (0.101) -1.625 (0.400) -6.370 (0.004)

Table 18: Parameter Estimates Forecast Excess Stock Returns 1995-2012
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Control 1 Month 3 Months 6 Months 12 months

CLIMATE 1.076 (0.001) 1.972 (0.008) 2.373 (0.043) 3.276 (0.031)
VXO -1.035 (0.005) -4.254 (0.000) -4.910 (0.000) -3.310 (0.022)
TERM -0.306 (0.259) 0.003 (0.997) 1.097 (0.338) -0.083 (0.958)
DEFAULT -0.233 (0.497) -0.696 (0.513) -4.983 (0.000) -12.017 (0.000)
RREL -0.123 (0.677) -0.059 (0.934) 1.234 (0.262) 2.640 (0.170)
log(D/P ) 1.135 (0.000) 1.640 (0.026) 3.074 (0.010) 5.154 (0.002)

Table 19: Parameter Estimates Forecast Excess Stock Returns 2012-2022

Table 17 reveals a positive forecasting relation between my measure for climate transition risks
and excess stock market returns for the entire period between 1995 and 2022 at a 5% significance
level at a 1-month horizon. However, Table 18 shows that this forecasting relation did not exist
during the period between 1995 and 2012. Instead, as Table 19 shows, this predictive power of my
measure of climate transition risks only appears to exist in more recent years. Furthermore, when
only considering the period between 2012 and 2022, the forecasting relation exists not only for the
1-month time horizon but also for the 3-month, 6-month, and 12-month horizons. This can be
interpreted as only in recent years that investors have begun to see increases in climate transition
risks leading to a higher perceived risk in stock markets. This signals that investors now require
increased compensation for taking on this additional risk.

4.2.3.2 Bond Returns

Tables 20, 21, and 22 show the coefficients corresponding to the different state variables from
Equation (16) when excess bond market returns are used as the dependent variable, both for the
entire period between 1995 and 2022 and for the sub-periods between 1995 and 2012, and between
2012 and 2022. Again, I consider four different time horizons, namely, 1 month ahead, 3 months
ahead, 6 months ahead, and 12 months ahead.

Control 1 Month 3 Months 6 Months 12 months

CLIMATE -0.002 (0.816) -0.010 (0.628) 0.227 (0.000) 0.256 (0.001)
VXO 0.019 (0.014) 0.058 (0.007) -0.195 (0.000) -0.126 (0.148)
TERM 0.066 (0.000) 0.202 (0.000) -0.197 (0.000) -0.538 (0.000)
DEFAULT -0.025 (0.000) -0.082 (0.000) -0.010 (0.791) -0.269 (0.000)
RREL -0.007 (0.357) 0.006 (0.784) 0.063 (0.036) 0.179 (0.006)
log(D/P ) 0.023 (0.000) 0.070 (0.000) -0.125 (0.000) -0.247 (0.000)

Table 20: Parameter Estimates Forecast Excess Bond Returns 2003-2022
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Control 1 Month 3 Months 6 Months 12 months

CLIMATE -0.013 (0.160) -0.040 (0.133) 0.124 (0.000) 0.003 (0.004)
VXO 0.009 (0.407) 0.037 (0.170) -0.200 (0.000) 0.000 (0.634)
TERM 0.067 (0.000) 0.204 (0.000) 0.099 (0.002) 0.006 (0.013)
DEFAULT -0.016 (0.004) -0.060 (0.000) 0.277 (0.000) -0.003 (0.031)
RREL -0.031 (0.000) -0.063 (0.000) 0.014 (0.611) 0.000 (0.628)
log(D/P ) 0.020 (0.000) 0.060 (0.000) 0.025 (0.134) -0.002 (0.010)

Table 21: Parameter Estimates Forecast Excess Bond Returns 2003-2012

Control 1 Month 3 Months 6 Months 12 months

CLIMATE 0.050 (0.000) 0.141 (0.000) 0.517 (0.000) 1.004 (0.000)
VXO -0.005 (0.748) -0.023 (0.617) -0.084 (0.301) -0.244 (0.077)
TERM 0.081 (0.000) 0.250 (0.000) -0.312 (0.000) -0.645 (0.000)
DEFAULT 0.011 (0.183) 0.032 (0.185) 0.002 (0.968) 0.067 (0.473)
RREL -0.006 (0.267) 0.005 (0.745) -0.055 (0.341) -0.138 (0.266)
log(D/P ) 0.021 (0.000) 0.065 (0.000) -0.178 (0.000) -0.355 (0.000)

Table 22: Parameter Estimates Forecast Excess Bond Returns 2012-2022

Similarly to what is seen for excess stock returns, Table 20 reveals a positive forecasting relation
between my measure for climate transition risks and excess bond market returns for the entire
considered time period at a 5% significance level at both a 6-month horizon and 12-month
horizon. As Table 21 reveals, this relationship already existed between 2003 and 2012.
Furthermore, as is the case for excess stock market returns, the forecasting relation for my
measure of climate transition risks becomes stronger between 2012 and 2022, as Table 22 shows.
Not only do the coefficient estimates for the 6-month and 12-month horizon increase, but also the
coefficients for the 1-month and 12-month horizon become positive and statistically significant at
a 5% significance level. This suggests that also in bond markets, especially in recent years,
investors require additional compensation for carrying climate transition-related risks.

4.2.3.3 Macroeconomic Activity

Tables 23, 24, and 25 show the coefficients corresponding to the different state variables from
Equation (16) when the CFNAI is used as the dependent variable, both for the entire period
considered between 1995 and 2022 and for the sub-periods between 1995 and 2012, and between
2012 and 2022. Similarly, Tables 26, 27, and 28 show the coefficients corresponding to the
different state variables from Equation (16) when the Industrial Production Index is used as the
dependent variable.
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Control 1 Month 3 Months 6 Months 12 months

CLIMATE -0.012 (0.766) 0.115 (0.145) 0.142 (0.161) 0.058 (0.776)
VXO -0.060 (0.419) -0.004 (0.960) 0.156 (0.426) -0.168 (0.467)
TERM 0.125 (0.283) 0.322 (0.060) 0.417 (0.010) -0.189 (0.412)
DEFAULT -0.304 (0.003) -1.011 (0.000) -1.866 (0.000) -2.504 (0.000)
RREL 0.152 (0.193) 0.504 (0.007) 1.019 (0.000) 1.512 (0.000)
log(D/P ) -0.091 (0.000) -0.207 (0.000) -0.382 (0.000) -0.791 (0.000)

Table 23: Parameter Estimates CFNAI 1995-2022

Control 1 Month 3 Months 6 Months 12 months

CLIMATE -0.070 (0.517) 0.192 (0.337) 0.339 (0.120) 0.948 (0.531)
VXO -0.236 (0.398) -0.235 (0.397) 0.092 (0.879) -0.613 (0.264)
TERM -0.035 (0.871) 0.197 (0.635) 0.715 (0.048) 1.183 (0.000)
DEFAULT -0.536 (0.289) -1.448 (0.018) -2.239 (0.000) -2.700 (0.000)
RREL 0.159 (0.719) 0.523 (0.400) 1.219 (0.022) 2.087 (0.000)
log(D/P ) -0.268 (0.141) -0.403 (0.055) -0.379 (0.085) -0.386 (0.046)

Table 24: Parameter Estimates Forecast CFNAI 1995-2012

Control 1 Month 3 Months 6 Months 12 months

CLIMATE -0.026 (0.373) -0.026 (0.674) -0.082 (0.404) -0.487 (0.040)
VXO -0.006 (0.881) -0.025 (0.728) 0.013 (0.915) -0.213 (0.481)
TERM 0.109 (0.000) 0.267 (0.000) 0.261 (0.003) -0.693 (0.002)
DEFAULT -0.273 (0.000) -0.830 (0.000) -1.555 (0.000) -1.991 (0.000)
RREL 0.161 (0.000) 0.486 (0.000) 0.897 (0.000) 1.137 (0.000)
log(D/P ) -0.071 (0.000) -0.215 (0.000) -0.439 (0.000) -0.915 (0.000)

Table 25: Parameter Estimates Forecast CFNAI 2012-2022

Control 1 Month 3 Months 6 Months 12 months

CLIMATE -0.000 (0.938) 0.001 (0.210) 0.001 (0.369) -0.002 (0.295)
VXO 0.000 (0.897) 0.001 (0.397) 0.004 (0.047) 0.004 (0.105)
TERM 0.002 (0.074) 0.004 (0.007) 0.007 (0.000) 0.005 (0.017)
DEFAULT -0.003 (0.002) -0.009 (0.000) -0.018 (0.000) -0.025 (0.000)
RREL 0.001 (0.186) 0.004 (0.013) 0.009 (0.000) 0.013 (0.000)
log(D/P ) -0.001 (0.001) -0.002 (0.000) -0.004 (0.000) -0.008 (0.000)

Table 26: Parameter Estimates Industrial Production 1995-2022
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Control 1 Month 3 Months 6 Months 12 months

CLIMATE -0.001 (0.569) 0.000 (0.872) -0.000 (0.940) -0.000 (0.888)
VXO -0.002 (0.340) -0.002 (0.305) -0.001 (0.920) -0.006 (0.235)
TERM 0.000 (0.845) 0.002 (0.544) 0.007 (0.044) 0.013 (0.000)
DEFAULT -0.005 (0.247) -0.013 (0.014) -0.019 (0.000) -0.024 (0.000)
RREL 0.001 (0.754) 0.005 (0.373) 0.012 (0.010) 0.021 (0.000)
log(D/P ) -0.002 (0.101) -0.004 (0.013) -0.005 (0.004) -0.008 (0.000)

Table 27: Parameter Estimates Forecast Industrial Production 1995-2012

Control 1 Month 3 Months 6 Months 12 months

CLIMATE 0.000 (0.429) 0.002 (0.540) 0.003 (0.490) -0.001 (0.799)
VXO 0.001 (0.169) 0.002 (0.199) 0.004 (0.004) 0.006 (0.042)
TERM 0.001 (0.000) 0.004 (0.000) 0.005 (0.000) 0.000 (0.938)
DEFAULT -0.003 (0.000) -0.008 (0.000) -0.017 (0.000) -0.023 (0.000)
RREL 0.002 (0.000) 0.005 (0.000) 0.009 (0.000) 0.012 (0.000)
log(D/P ) -0.000 (0.100) -0.002 (0.000) -0.004 (0.000) -0.008 (0.000)

Table 28: Parameter Estimates Forecast Industrial Production 2012-2022

Tables 23 up to 28 show that climate transition risks, as measured by the Climate Transition
Index, generally do not significantly forecast macroeconomic activity as measured by the CFNAI
or the Industrial Production Index. The only exception corresponds to the CFNAI at the
12-month horizon for the period between 2012 and 2022. Here an increase in climate transition
risks seems to forecast a decrease in the CFNAI at a 5% significance level.

In conclusion, although there is little evidence for climate transition risks being able to forecast
macroeconomic activity, my climate transition index does have the ability to predict excess stock
and bond market returns. This finding still opens the door for climate transition risks as a
candidate factor for commanding a risk premium.

4.3 Climate Transition Risk Premium Via Portfolio

Sorts
With my measure of climate transition risks, thus having forecasting power for excess stock and
bond market returns, the next natural step is to directly investigate whether climate
transition-related risks proxied by my index command a risk premium in the cross-section of U.S.
stock and both long-term and short-term bond markets. Similarly to authors such as Huynh and
Xia (2021), Faccini et al. (2021), Bats et al. (2023) and Bali, Brown, and Tang (2017), and
Brogaard and Detzel (2015), I will seek to answer this research question via portfolio sorts. As
shown by Bali et al. (2016) and Cattaneo et al. (2022), portfolio sorts can be seen as a two-step
non-parametric estimator of the significance of asset-pricing factors that is able to discover
potential non-linear relations between returns and asset-pricing factors.
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Recall that it is, in fact, shocks to risk factors that command risk premia. This means that in
order to discover the existence of a climate transition risk premium as implied by my Climate
Transition Index, I first need to find shocks to Climate Transition Index. In order to obtain these
innovations to climate transition risks, I estimate an AR(p) process for my climate index.
Following Campbell and Yogo (2006) and Brogaard and Detzel (2015), I make use of the lag order
that minimizes the Bayesian Information Criterion. This minimization occurs when using lags 1,
3, and 10 with a corresponding BIC equal to 3090.558. Hence, I estimated the AR model from
Equation (19).

CTIt = γ0 + γ1 · CTIt−1 + γ2 · CTIt−3 + γ3 · CTIt−10 + ϵCTI
t (19)

This yields the estimates shown in Table 29.

Parameter Estimate

γ0 14.820 (0.002)
γ1 0.609 (0.000)
γ2 0.167 (0.000)
γ3 0.076 (0.070)

Table 29: AR Coefficient Estimates Climate Index

Next, by reversing Equation (19) using the parameter estimates of Table 29, I can recover the
innovations to the climate index, ϵCTI

t , and start the portfolio sort procedure to test whether
climate transition risks are priced. Figure 2 shows the recovered innovations, ϵCTI

t .
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Figure 2: Innovations to Climate Transition Index, ϵCTI
t

With the climate transition news shocks recovered it becomes possible to start the portfolio
sorting procedure. During the first step of this procedure, I estimate the time-varying exposure to
innovations in climate transition risks for excess returns of different assets by using
backward-looking rolling window regressions of asset returns using a 36-month window. As
Cattaneo et al. (2022) remark, with portfolio sorts, the choice for the estimation window with
portfolio sorts can be seen as a tuning parameter involving a trade-off between bias and variance.
A 36-month window means a shorter window than the five-year window that, as Cattaneo et al.
(2022) note, is often used in practice. This choice is made due to the limited size of the available
data and to reduce computational resources that are needed with larger window sizes. It is not
investigated if the conclusions reached on the existence of a climate transition risk premium are
sensitive to the choice for the estimation window, and this question remains open for further
investigation by other researchers. Concretely, I estimate Equation (20) for each asset.

rei,t = αi + βCTI · ϵCTI
t + β ·Zt + νt (20)

In Equation (20) rei,t are stock or bond returns above the one-month Treasury bill rate, ϵCTI
t are

the innovations to the climate index, and Zt are common controls that are well-established in
academic literature to explain the cross-section of stock returns or bond returns. For stock
returns, this includes the three factors of Fama and French (1993) (the excess market return, the
Small Minus Big Factor, and High Minus Low Factor), the five factors of Fama and French
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(2015), which expands on the three-factor model by including the Robust Minus Weak Factor and
Conservative Minus Aggressive Factor, and the five-factor model augmented with the momentum
factor by Carhart (1997). Regarding bond returns, I follow Chung, Wang, and Wu (2019) and use
the term and default spreads and market volatility measured by the Chicago Board Options
Exchange Market Volatility Index as controls.

I continue the portfolio sort approach by rolling forward the starting period with a single month
and sorting the assets in quintile portfolios. For each portfolio, I subsequently calculate the
post-sorting equally weighted monthly return. Moreover, I also calculate the return of a
long-short spread by subtracting the return of the first portfolio from the return of the fifth
portfolio. I continue this procedure until the sample is exhausted. Subsequently, considering that
a long-short spread portfolio is also an excess return, I can use these spread portfolios to gauge
whether there is a statistically significant compensation for exposure to climate transition risks
that other commonly used asset-pricing factors cannot explain. I do this by investigating whether
αi for the spread portfolios is significantly different from zero.

4.3.1 Equities

Tables 30, 31, and 32 show the α-estimates for the portfolios corresponding to the various periods
considered. The corresponding Newey et al. (1987) standard errors are shown in parentheses. For
this analysis, I use all stocks listed on the S&P 500 Index between 1995 and 2022. Here, I control
for exposure to excess market returns, the three factors by Fama and French (1993), the five
factors by Fama and French (2015), and the five factors by Fama and French (2015) augmented
with the momentum factor by Carhart (1997).

Alpha CAPM 3 Factor 5 Factor 5 Factor + Momentum

First 0.327 (0.109) 0.258 (0.109) 0.145 (0.313) 0.241 (0.050)
Second 0.085 (0.625) 0.023 (0.842) -0.139 (0.149) -0.082 (0.348)
Third -0.027 (0.845) -0.078 (0.457) -0.221 (0.022) -0.168 (0.075)
Fourth 0.064 (0.677) 0.008 (0.946) -0.150 (0.123) -0.103 (0.268)
Fifth 0.023 (0.883) -0.032 (0.802) -0.081 (0.535) -0.021 (0.872)
Spread -0.304 (0.059) -0.290 (0.063) -0.226 (0.145) -0.263 (0.081)

Table 30: Alpha Estimates 1995-2022
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CAPM 3 Factor 5 Factor 5 Factor + Momentum

FIRST -0.261 (0.140) -0.154 (0.346) -0.195 (0.206) -0.089 (0.563)
SECOND -0.380 (0.067) -0.330 (0.008) -0.323 (0.006) -0.310 (0.011)
THIRD -0.255 (0.150) -0.220 (0.059) -0.217 (0.049) -0.209 (0.074)
FOURTH -0.257 (0.131) -0.229 (0.051) -0.224 (0.044) -0.201 (0.063)
FIFTH -0.252 (0.225) -0.194 (0.210) -0.207 (0.168) -0.167 (0.270)
SPREAD 0.009 (0.966) -0.040 (0.849) -0.012 (0.954) -0.079 (0.701)

Table 31: Alpha Estimates 1995-2012

CAPM 3 Factor 5 Factor 5 Factor + Momentum

FIRST 0.718 (0.014) 0.542 (0.008) 0.376 (0.055) 0.437 (0.006)
SECOND 0.347 (0.151) 0.217 (0.159) -0.048 (0.731) -0.006 (0.962)
THIRD 0.098 (0.620) -0.013 (0.935) -0.257 (0.085) -0.217 (0.114)
FOURTH 0.224 (0.309) 0.088 (0.584) -0.139 (0.341) -0.105 (0.436)
FIFTH 0.195 (0.392) 0.049 (0.803) -0.011 (0.956) 0.032 (0.868)
SPREAD -0.522 (0.017) -0.493 (0.011) -0.387 (0.069) -0.405 (0.050)

Table 32: Alpha Estimates 2012-2022

Table 30 shows the α-estimates for the various spread portfolios when controlling for standard
financial factors. This table shows that the coefficients corresponding to α for the spread
portfolios are always negative, but not for all specifications significant at even a 10% significance
level. This lack of significance means that when the entire period between 1995 and 2022 is
considered, there is insufficient evidence to reject the null hypothesis of the climate transition
factor not being priced.

However, an interesting pattern emerges when conducting a sub-sample investigation into the
period between 1995 and 2012 and between 2012 and 2022. As shown in Table 31, for the period
between 2012 and 2022, the estimated coefficients for α of the spread portfolios, when controlling
for the different factors, are all not significantly different from zero. However, another picture
emerges when considering the final period starting from 2012, as shown in Table 32. Namely,
during this period, when controlling for the different financial factors, the α-estimates are all
negative and significant at a 10% significance level. Furthermore, except when controlling for the
five factors by Fama and French (2015), the α-estimates are even significant at a 5% significance
level. This indicates the emergence of a climate transition risk premium in recent years. This
matches the findings by authors such as Faccini et al. (2021) and Bolton and Kacperczyk (2021).

Furthermore, the α-estimates on the spread portfolios over the entire period and between 2012
and 2022 are all negative. This is consistent with an intertemporal hedging motive related to
climate transition risks in the vein of the intertemporal hedging hypothesis by Merton (1973). In
this context, this entails, similarly to what Faccini et al. (2021) find, that stocks that display a
negative correlation with shocks to climate transition news tend to be associated with higher
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levels of risk since an increase in the climate transition factor signifies an unexpected rise in
climate transition risks. In order to mitigate this risk, investors opt to purchase stocks with
positive climate transition betas. Consequently, the demand for these stocks increases, driving up
their prices while simultaneously reducing their returns.

4.3.2 Short-Term Bond Returns

Next, Tables 33, 34, and 35 show the corresponding α-estimates for the different spread portfolios
for several different periods using short-term bonds. Following Bats et al. (2023), short-term
bonds are defined as bonds with times to maturities of up to seven years. Furthermore, like Bats
et al. (2023), I calculate the return of a short-term bond as shown in Equation (21).

ri,t =
(Pi,t +AIi,t) + Ci,t − (Pi,t−1 +AIi,t−1)

(Pi,t−1 +AIi,t−1)
(21)

In Equation (21), Pi,t stands for the price of a bond, AIi,t stands for the accrued interest, and Ci,t

stands for the coupon payment. Finally, the one-month Treasury bill rate is subtracted from ri,t
to obtain the excess bond return, rei,t. Like, Bats et al. (2023), I use the factors used by Chung
et al. (2019) as controls. In Tables 33, 34, and 35, the columns labeled (1) indicate controlling for
excess market returns, the default spread, and the term spread. The columns labeled (2)
additionally indicate accounting for VXO, the implied volatility series on the S&P 100 index.
Finally, the columns labeled (3) also indicate taking the size factor and the book-to-market ratio
factor by Fama and French (1993) into account. As Bats et al. (2023) state, this additional use of
stock market factors is done to align with existing corporate bond market literature.

(1) (2) (3)

FIRST -0.295 (0.646) 0.397 (0.555) 0.469 (0.494)
SECOND -0.518 (0.382) 0.191 (0.755) 0.279 (0.661)
THIRD -0.184 (0.749) 0.552 (0.386) 0.671 (0.301)
FOURTH -0.608 (0.319) 0.326 (0.564) 0.423 (0.463)
FIFTH -0.772 (0.182) 0.157 (0.776) 0.252 (0.651)
SPREAD -0.457 (0.032) -0.222 (0.503) -0.192 (0.544)

Table 33: Alpha Estimates 2003-2022
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(1) (2) (3)

FIRST -0.218 (0.809) 1.118 (0.271) 1.190 (0.212)
SECOND 0.108 (0.880) 1.637 (0.018) 1.674 (0.014)
THIRD -0.079 (0.911) 1.519 (0.133) 1.624 (0.106)
FOURTH 0.296 (0.729) 2.558 (0.003) 2.652 (0.003)
FIFTH -0.719 (0.474) 1.544 (0.197) 1.653 (0.149)
SPREAD -0.506 (0.268) 0.422 (0.620) 0.467 (0.550)

Table 34: Alpha Estimates 2003-2012

(1) (2) (3)

FIRST -0.222 (0.744) 0.853 (0.284) 0.850 (0.339)
SECOND -0.685 (0.305) 0.305 (0.711) 0.507 (0.583)
THIRD -0.409 (0.522) 0.642 (0.388) 0.775 (0.360)
FOURTH -0.542 (0.417) 0.463 (0.558) 0.555 (0.528)
FIFTH -0.756 (0.234) 0.200 (0.772) 0.418 (0.594)
SPREAD -0.534 (0.003) -0.653 (0.001) -0.433 (0.038)

Table 35: Alpha Estimates 2012-2022

Table 33 shows that for the entire period between 2003 and 2022, climate transition risks only
earn a significant negative excess return at a 5% significance level when controlling for the excess
market returns, the default spread, and the term spread. However, the significance disappears
after additionally controlling for VXO and when controlling for the VXO and the size and
book-to-market factors. Furthermore, Table 34 shows that for the sub-period between 2003 and
2012, the excess return on the spread portfolios is insignificant when controlling for any of the
different sets of controls. Moreover, when controlling for VXO and when controlling for the VXO
and the size and book-to-market factors, the α-estimates of the spread portfolios even become
positive. Finally, Table 35 reveals that only when considering the period between 2012 and 2022
will the excess return on the spread portfolios become significant, controlling for all variables
considered. In addition, all different α-estimates are also negative. This matches what is seen for
stock returns in the previous section, namely the emergence of a climate transition risk premium
only in recent years for U.S. corporate short-term bond markets. This can again be explained by
a hedging explanation related to climate transition-related risks along the lines of the
intertemporal hedging hypothesis by Merton (1973). This finding contrasts somewhat with
findings by Bats et al. (2023) for the E.U. short-term corporate bond market. They find that
since the Paris Agreement, only physical climate risk is significantly priced in E.U. corporate
bond markets. However, they do not find evidence for the existence of a statistically significant
E.U. climate transition risk premium.

4.3.3 Long-Term Bond Returns

Finally, I also investigate the existence of a climate transition risk premium in U.S. corporate
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long-term bond markets. Again, following Bats et al. (2023), bonds with times to maturities
longer than seven years are classified as long-term bonds. Tables 36, 37, and 38 show the
corresponding α-estimates for the different spread portfolios for several different periods using
long-term bonds. The returns for the long-term bonds are calculated the same way as the
short-term bonds, as shown in Equation (21). Likewise, in Tables 36, 37, and 38, the columns
labeled (1) indicate controlling for excess market returns, the default spread, and the term spread.
The columns labeled (2) additionally indicate accounting for VXO, the implied volatility series on
the S&P 100 index. Finally, the columns labeled (3) also indicate taking the size factor and the
book-to-market ratio factor by Fama and French (1993) into consideration. This additional use of
stock market factors is again done to align with existing corporate bond market literature.

(1) (2) (3)

FIRST 0.094 (0.367) 0.264 (0.009) 0.265 (0.007)
SECOND 0.001 (0.992) 0.099 (0.110) 0.106 (0.093)
THIRD -0.015 (0.757) 0.061 (0.235) 0.069 (0.188)
FOURTH -0.032 (0.506) 0.030 (0.532) 0.039 (0.423)
FIFTH -0.159 (0.032) -0.107 (0.143) -0.097 (0.192)
SPREAD -0.253 (0.000) -0.370 (0.000) -0.362 (0.000)

Table 36: Alpha Estimates 2003-2022

(1) (2) (3)

FIRST 0.057 (0.644) 0.444 (0.037) 0.448 (0.023)
SECOND -0.016 (0.829) 0.217 (0.017) 0.222 (0.016)
THIRD -0.015 (0.830) 0.174 (0.027) 0.180 (0.021)
FOURTH -0.005 (0.949) 0.148 (0.105) 0.156 (0.070)
FIFTH 0.020 (0.899) 0.122 (0.493) 0.135 (0.413)
SPREAD -0.037 (0.863) -0.322 (0.294) -0.312 (0.264)

Table 37: Alpha Estimates 2003-2012

(1) (2) (3)

FIRST 0.231 (0.032) 0.382 (0.000) 0.382 (0.000)
SECOND 0.020 (0.646) 0.073 (0.102) 0.075 (0.095)
THIRD -0.025 (0.315) 0.003 (0.900) 0.005 (0.845)
FOURTH -0.070 (0.004) -0.052 (0.040) -0.050 (0.051)
FIFTH -0.324 (0.000) -0.296 (0.000) -0.295 (0.000)
SPREAD -0.555 (0.000) -0.679 (0.000) -0.677 (0.000)

Table 38: Alpha Estimates 2012-2022
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Table 36 shows that for the entire period between 2003 and 2022, climate transition risks earn a
significant negative excess return when controlling for all different control factors. This is
somewhat in contrast with what is found for short-term bonds. However, in alignment with the
short-term bonds, Table 37 shows that for the sub-period between 2003 and 2012, the excess
returns on the spread portfolios for the long-term bonds are again not statistically significant.
Instead, as is the case in equity and short-term bond markets, the existence of a climate
transition risk premium for long-term bonds hinges on more recent years. Namely, Table 38
reveals that only when considering the period between 2012 and 2022 do the excess returns on the
spread portfolios become negative and significant at a 5% significance level when controlling for
all different variables considered. This statistically significant risk premium for U.S. corporate
bond markets again clashes with what Bats et al. (2023) find for E.U. corporate bond markets.
Namely, as is the case with short-term bond markets, Bats et al. (2023) find only a significant risk
premium associated with physical climate risks but not climate transition risks.

4.3.4 Individual Newspapers

In this section, I conduct additional robustness tests and see whether the found existence of a
climate transition risk premium in U.S. equity and bond markets still exists when separately
considering the individual newspapers from which I construct my index. To this end, I use the
separate newspaper-specific indices I used when constructing the final climate transition index.
Again, I recover the shocks from these indices by estimating an AR model with the optimal
amount of lags selected using the Bayes Information Criterion. These shocks are shown in Figures
3, 4, and 5.

Figure 3: Innovations to WSJ Climate Transition Index, ϵWSJI
t

Figure 4: Innovations to NYT Climate Transition Index, ϵNY TI
t
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Figure 5: Innovations to WP Climate Transition Index, ϵWPI
t

With these shocks for the individual newspaper indices, I repeat the procedure previously
described. Tables 43 up to 51 show the unexplained excess stock returns of the spread portfolios
when controlling for various factors for the different newspapers. Here it is noticeable that only
the shocks to the Washington Post Index seem to command a risk premium over the entire
period, as shown in Table 49. However, Tables 50 and 51 reveal that this is again mainly caused
by the final period between 2012 and 2022, considering that the results corresponding to the
period between 1995 and 2012 from Table 50 show that the α of the spread portfolios are never
significant when controlling for the different factors.

Furthermore, Tables 43 up to 48 reveal that when only shocks to the NYT and WSJ Indices are
considered, no significant risk premium exists in stock markets stemming from climate transition
risks. For these shocks, all α-estimates for the spread portfolios are insignificant for both the
entire period between 1995 and 2022 and the subperiods 1995-2012 and 2012-2022 at a 5%
significance level. This would suggest that the existence of a climate transition risk premium
found when taking articles from all the different sources into account is caused by the articles
from the Washington Post.

Next, Tables 52 up to 60 show the unexplained excess short-term bond returns. Table 52 reveals
that over the entire time period, only the shocks to the WSJ Index command a significant risk
premium. Tables 53 and 54 indicate that the existence of a risk premium is again mainly driven
by the period between 2012 and 2022. Tables 55 up to 60 show that the shocks to the New York
Times Index and the Washington Post Index do not command a risk premium when considering
the significance of the α-estimates for the spread portfolios over the entire period. However, when
only looking at the period between 2012 and 2012, the unexplained return on the spread
portfolios is again significant when controlling for the different factors. Overall this corresponds
with the findings reached when considering the multi-paper index of a recently emerged climate
transition risk premium in short-term bond markets.

Finally, considering the long-term bonds, Tables 61 up to 69 reveal that the different separate
indices lead to the same conclusion as is reached when looking at the multi-paper index. Namely,
the shocks to all three separate indices seem to command a significant risk premium over the
entire period between 2003 and 2022, as is the case for the shocks to the multi-paper index.
Furthermore, the results for all three different sub-indices also seem to hinge on the second
sub-period between 2012 and 2022, as the unexplained returns of the spread portfolios are
insignificant when controlling for the different sets of factors in the first sub-sample.
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Overall this indicates that the existence of a climate transition risk premium does not hinge on
the contribution of one particular newspaper. For the short-term bond returns, the existence of a
climate transition risk premium over the entire period considered seems to depend on a single
newspaper. However, closer inspection reveals that for the different assets considered, the
individual indices generally point towards no such risk premium existing between 2003 and 2012
and that this risk premium only appears in the later years between 2012 and 2022. This is in line
with the conclusion that is reached when considering the multi-paper index. The exception is
when considering the WSJ and NYT indices for excess stock market returns, as those indices also
do not indicate the existence of a climate transition risk premium after 2012.

4.4 Climate Transition Risk Premium Via Dynamic

Conditional Correlation
I conduct a further robustness test for the existence of a climate transition risk premium by
following the approach of Bali and Engle (2010). This approach makes use of the Dynamic
Conditional Correlation (DCC) model created by Engle (2002) to estimate the time-varying
conditional covariances between the shocks to the Climate Transition Index and excess monthly
returns of individual stock and bond returns and a number of test portfolios. Subsequently, these
conditional covariances are used to analyze how stocks’ excess returns react to their conditional
covariances with climate transition risks when controlling for different macroeconomic or financial
factors.

The DCC model by Engle (2002) overcomes the limitations of conventional approaches that
assume constant correlations between assets. It acknowledges that correlations among assets can
vary over time due to market conditions and dynamics. DCC parameterizes the volatilities and
correlations separately and has the following general specification shown in Equation (22).

yt+1 =

rit+1

rmt+1

xt+1

 = α0 + α1yt + µt + ϵt+1 (22)

For the asset returns, rit+1, µt follows from Equation (11), since

µt+1 = Et(r
i
t+1) = rft +A Covt(r

i
t+1, r

m
t+1) +B Covt(r

i
t+1,∆xt+1). Furthermore, the

variance-covariance matrix of ϵt+1 is given by the expression shown in Equation (23).

Vt(ϵt+1) = Dt+1ρt+1Dt+1 (23)

Here Dt+1 is a diagonal matrix of conditional standard deviations given by Equation (24).

D2
t+1 = β0 + β1y

2
t + β2D

2
t (24)

Furthermore, the correlations from Equation (23) are given by Equation (25).

ρt = diag(Qt)
− 1

2 Qt diag(Qt)
− 1

2 (25)
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In Equation (25), Qt+1 = ρ̄+ γ1 · (utu
′
t − ρ̄) + γ2(Qt − ρ̄), with ut = D−1

t ϵt and ρ̄ = 1
T

∑T
t=1 utu

′
t

Next, following Bali and Engle (2010), the estimation procedure continues by removing
autoregressive components in the returns, and individual univariate GARCH models are
estimated for each return and state variable. Next bivariate DCC estimates of correlations are
calculated for each individual return or test portfolio with the market return, as well as with
various state variables, including the climate factor. This is accomplished using the bivariate
likelihood function, as Bali and Engle (2010) state. Finally, the expected return equation is
estimated using panel regression, where the various conditional covariances serve as regressors.

In particular, following Bali and Engle (2010), I estimate the following equations via seemingly
unrelated regression (SUR) while constraining all regressions to have the same slope coefficient as
is done in Equation (26) and in Equation (27).

rit+1 − rft = Ci +A · σim,t+1 +B1 · σi,∆DEF,t+1 +B2 · σi,∆TERM,t+1

+B3 · σi,∆FED,t+1 +B4 · σi,ϵCTI ,t+1 + ϵi,t+1

(26)

rit+1 − rft = Ci +A · σim,t+1 +B1 · σi,SMB,t+1 +B2 · σi,HML,t+1

+B3 · σi,RMW,t+1 +B4 · σi,CMA,t+1

+B5 · σi,MOM,t+1 +B6 · σi,ϵCTI ,t+1 + ϵi,t+1

(27)

In Equations (26) and (27), rit+1 are individual stocks or portfolio returns, rft is the U.S. 1 Month
Treasury Bill Rate, Ci is an asset-specific intercept, and A and the B terms are common slope
coefficients. Furthermore, σim,t+1, σi,∆DEF,t+1, σi,∆TERM,t+1, σi,∆FED,t+1, σi,SMB,t+1, σi,HML,t+1,
σi,RMW,t+1, σi,CMA,t+1, σi,MOM,t+1, σi,ϵCTI ,t+1 are the conditional time-varying covariance
estimated via DCC between the excess returns on the assets and respectively, the market return,
changes in the default spread, changes in the term spread, changes in the federal funds rate, the
five factors by Fama and French (2015), the momentum factor by Carhart (1997) and shocks to
the climate transition index.

The results from running the regression from Equation (26) when using the individual stock
returns, individual long-term bonds, and a number of research portfolios from French (2023) are
shown in Tables 39, 40, and 41.

σim,t+1 σi,∆DEF,t+1 σi,∆TERM,t+1 σi,∆FED,t+1 σi,ϵCTI ,t+1

Individual Stocks 3.654 (0.000) -2.140 (0.000) -0.228 (0.000) -6.637 (0.000) -0.426 (0.000)
Long-Term Bonds 3.913 (0.000) -10.347 (0.000) -4.971 (0.000) -1.766 (0.078) -0.391 (0.000)
48 Industry Portfolios 3.331 (0.000) 0.666 (0.000) 5.148 (0.000) 5.773 (0.000) -0.130 (0.051)
Size/Investment Sorted 2.468 (0.000) 0.304 (0.000) 2.017 (0.000) 2.289 (0.000) -0.419 (0.000)
Momentum Sorted 4.680 (0.000) 0.736 (0.000) 3.340 (0.000) 5.078 (0.000) -0.073 (0.249)
Size/B-M Sorted 7.104 (0.000) -0.140 (0.000) 0.718 (0.002) 1.426 (0.000) -0.027 (0.241)

Table 39: Risk premia induced by conditional covariation with macroeconomic variables.
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Table 40 shows the estimates for the risk premia induced by conditional covariation with
macroeconomic variables and shocks to the climate transition index. As Bali and Engle (2010)
find, the common slope coefficient A on σim,t+1 is for the different assets and portfolios used both
positive and highly significant. Furthermore, my estimates for A are generally with values
between 2.468 and 4.680, in the same range as the estimates reported by Bali and Engle (2010).
Only the estimate on the portfolios sorted by size and book-to-market is considerably higher, with
an estimate of 7.104. Furthermore, like Bali and Engle (2010), I also find that the slope
coefficients on σi,∆DEF,t+1 and σi,∆TERM,t+1 are highly significant. However, unlike Bali and
Engle (2010), my estimates for the slope coefficients on σi,∆DEF,t+1 and σi,∆TERM,t+1 are not
uniformly positive and negative, respectively. Furthermore, also unlike Bali and Engle (2010), I
do find that the slope coefficients on σi,∆FED,t+1 are highly significant.

Moreover, when looking at the risk premium induced by conditional covariation with climate
transition shocks, Table 39 shows that the coefficients on σi,ϵCTI ,t+1 are uniformly negative for all
assets and returns with values ranging from −0.027 to −0.426. The slope coefficients on σi,ϵCTI ,t+1

are significant at the 5% significance level when considering the individual stock returns, the
long-term bond returns, and the portfolios sorted on size and investment. Additionally, with the
48 Industry Portfolios, the B4 estimate with a p-value of 0.051 is significant at a 10% significance
level. However, the coefficients are insignificant for the portfolios sorted on momentum and those
sorted on size and book-to-market. Overall this indicates that when controlling for
macroeconomic factors, climate transition risks are priced but not consistently.

σim,t+1 σi,SMB,t+1 σi,HML,t+1 σi,RMW,t+1

Individual Stocks 8.334 (0.000) 1.851 (0.000) 2.009 (0.000) 2.497 (0.000)
Long-Term Bonds 5.456 (0.000) 3.306 (0.000) 5.967 (0.000) 0.890 (0.000)
48 Industry Portfolios 1.900 (0.000) 3.134 (0.000) 1.973 (0.000) 2.854 (0.000)
Size/Investment Sorted 3.313 (0.000) 1.472 (0.000) 0.557 (0.057) 1.132 (0.000)
Momentum Sorted 1.336 (0.056) 0.421 (0.255) 0.134 (0.803) -0.055 (0.916)
Size/B-M Sorted 4.032 (0.000) 1.419 (0.000) 1.059 (0.002) 0.976 (0.000)

Table 40: Risk premia induced by conditional covariation with financial factors

σi,CMA,t+1 σi,MOM,t+1 σi,ϵCTI ,t+1

Individual Stocks 4.542 (0.000) 1.410 (0.000) -0.404 (0.000)
Long-Term Bonds -0.191 (0.435) 0.521 (0.027) -1.228 (0.000)
48 Industry Portfolios -0.339 (0.504) 1.254 (0.006) -0.901 (0.072)
Size/Investment Sorted -0.143 (0.600) -0.4712 (0.067) -0.032 (0.899)
Momentum Sorted 0.312 (0.579) -0.420 (0.209) -0.827 (0.066)
Size/B-M Sorted -0.790 (0.006) -0.389 (0.115) -0.603 (0.018)

Table 41: Risk premia induced by conditional covariation with financial factors

Finally, Tables 40 and 41 show the estimates for the risk premia induced by conditional
covariation with financial factors in addition to the climate transition factor. Similarly to what
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Bali and Engle (2010) report, I find that the estimated coefficient for A is again highly significant
when controlling for financial factors. However, I find a larger spread in estimates for A than
before with values ranging from 1.336 to 8.334. Furthermore, like Bali and Engle (2010), I find
that the coefficient on the conditional covariation with the HML factor is positive in all cases and
statistically significant for most assets and portfolios. However, I also find that the coefficient on
the conditional covariation with the SMB factor is always positive and, for most returns,
significant, which contrasts with findings by Bali and Engle (2010). Furthermore, like Bali and
Engle (2010), I also find that the coefficient on the conditional covariation with the Momentum
factor is not consistently priced in the ICAPM framework.

Furthermore, when looking at the risk premium induced by conditional covariation with climate
transition shocks when controlling for financial factors, Table 41 shows that the coefficients on
σi,ϵCTI ,t+1 are again uniformly negative for all assets and returns with values ranging from −0.032
to −1.228. The slope coefficients on σi,ϵCTI ,t+1 are significant at the 5% significance level when
considering the individual stock returns, the long-term bond returns, and the portfolios sorted on
size and book-to-market. Additionally, the coefficients on the conditional covariation with climate
transition shocks are significant at the 10%-significance level when considering the 48 Industry
Portfolio and the momentum-sorted portfolios. However, the coefficients are insignificant for the
portfolios sorted on size and investment. This indicates that climate transition risks are again
priced but not consistently when controlling for financial factors.

4.5 Climate Transition Risk Premium Via Factor

Mimicking Portfolios
As a final test to confirm the existence of a climate transition risk premium, I use Factor
Mimicking Portfolios similar to Brogaard and Detzel (2015). This approach makes use of the fact
that ICAPM implies linear pricing kernel models, as noted in Equations (12) and (13). Next,
consider the projection b′ret of the pricing kernel mt onto the space of excess returns ret as shown
in Equation (28) and Equation (29).

mt = b′ret + ϵt (28)

E(ϵtr
e
t ) = 0 (29)

Then following Brogaard and Detzel (2015), Equations (13), (28), and (29) can be used to obtain
the expression given in Equation (30).

0 = E(mtr
e
t ) = E((b′ret + ϵt)r

e
t ) = E((b′ret )r

e
t ) (30)

This is referred to as the factor-mimicking portfolio of m, which is a regression of the discount
factor on excess returns. As Brogaard and Detzel (2015) note, b′ret also contains all relevant asset
pricing information as mt, but does not include the uninformative term ϵt that may include
measurement error orthogonal to asset returns. This property, in turn, makes it convenient for
empirical work to use factor-mimicking portfolios. Next, following Brogaard and Detzel (2015), I
create factor mimicking portfolios for the climate transition factor as shown in Equation (31).

ϵCTI
t = a+ b′ret + ηt (31)
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In Equation (31), ϵCTI
t represent the climate transition shocks recovered from Equation (19), and

ret are the returns on a set of basis assets, for which I, following Brogaard and Detzel (2015),
choose the Fama French 25 size and Momentum Portfolios. Brogaard and Detzel (2015) selected
these returns due to their sizeable spread in returns, which cannot be solely explained by a
limited number of factors. Next, by using the estimated b′ from Equation (31), I find the factor
mimicking portfolio defined by Equation (32).

FCTI = b′ret (32)

I subsequently make use of Fama-MacBeth regressions (Fama and MacBeth, 1973) to investigate
whether the climate transition index factor-mimicking portfolio FCTI is a factor that helps price
assets. As Faccini et al. (2021) note, while Fama-MacBeth regressions can only take linear effects
into account, they have the advantage over portfolio sorts that they are able to accommodate
multiple regressors. In these regressions, I choose the Fama-French 48 industry portfolios since, as
Faccini et al. (2021) and Graff Zivin and Neidell (2014) note, it is highly probable that the impact
of climate risks varies greatly among different industries.

For these Fama-MacBeth regressions, I again use different sets of controls, namely, the tree
factors by Fama and French (1993), the five factors by Fama and French (2015), the five factors
augmented by the momentum factor by Carhart (1997). Consequently, I estimate Equation (33)
for the final case.

rei,t = λ0 + λMKT · βi
MKT + λHML · βi

HML + λSMB · βi
SMB

+ λRMW · βi
RMW + λCMA · βi

CMA + λMOM · βi
MOM + λFCTI

· βi
FCTI

(33)

Here, in the first step, for each industry portfolio, I estimate the beta coefficients for the various
factors, including the factor-mimicking portfolio FCTI . In the second step, I estimate the risk
premia associated with each factor via cross-sectional regressions of the excess returns on the
estimated beta coefficients obtained in the first step of the estimation procedure.

CAPM 3 Factors 5 Factors 5 Factors + Mom

λFCTI
-11.795 (0.000) -7.851 (0.000) -2.733 (0.000) -2.535 (0.000)

λMKT -1.785 (0.002) 3.896 (0.000) 8.024 (0.014) 4.9717 (0.000)
λSMB -4.814 (0.070) 10.023 (0.004) 0.050 (0.984)
λHML -0.577 (0.803) -6.595 (0.039) -0.699 (0.749)
λRMW 8.921 (0.018) 6.974 (0.007)
λCMA 9.548 (0.000) 20.758 (0.000)
λMOM -54.005 (0.000)

Table 42: Risk premia Estimates

Table 42 shows that FCTI carries a statistically significant negative risk premium when
controlling for different factors. This again supports the existence of a climate transition risk
premium that is found in previous sections of this thesis. However, it should be noted that the
results reported in this section are only specific to a certain choice for the basis assets and test
assets. It remains open to other researchers if the results obtained here are robust when other
basis and test asset choices are made.
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4.6 Conclusion Climate Transition Risk Premium
Overall, I find evidence for the existence of a statistically significant climate transition risk
premium in both equity and long-term and short-term bond markets. This risk premium appears
to have emerged in recent years, with no evidence of a significant risk premium before 2012.
Instead, this risk premium appears to be driven by the period between 2012 and 2022. This
conclusion generally stays the same when instead of using a multi-paper index, the climate
transition shocks corresponding to the various papers that make up this index are individually
examined. Additionally, by making use of the method by Bali and Engle (2010) that makes use of
the Dynamic Conditional Correlation by Engle (2002) and by using factor-mimicking portfolios
and Fama-MacBeth regressions as is done by Brogaard and Detzel (2015), I find further evidence
for the existence of a climate transition risk premium. This risk premium associated with climate
transition risks is further supported by my Climate Transition Index, which has predictive power
for future excess stock and bond market returns. The existence of a climate transition risk
premium has far-reaching consequences for financial institutions such as banks and insurance
companies. Firstly, it shows the need to develop suitable risk management tools and strategies to
obtain the desired exposure level to the climate transition’s financial consequences. Secondly, it
shows the need to properly prepare for the likely further incorporation of climate transition risks
in stress tests and ORSAs, as will likely be mandated by regulators such as the DNB and ECB
when the existence of such a risk premium is further accepted.
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5 Quantile-on-Quantile Analysis

5.1 Introduction
With the previous section providing evidence for the existence of a recently emerged climate
transition risk premium, the next obvious research area is to investigate how climate transition
risks affect different assets. This is critical for financial institutions such as banks and insurance
companies. Assets related to high-carbon industries may decline in value due to potential carbon
pricing or regulatory changes. Conversely, assets in low-carbon or climate-resilient sectors may
experience an increase in value as market preferences shift. For these financial institutions to be
able to conduct risk management adequately, there is a need to gain a better understanding of
how climate transition risks affect different industries and different commodity types.

I set out to investigate this research question by using the quantile-on-quantile (QQ) approach by
Sim and Zhou (2015). This method combines quantile regression with non-parametric local linear
regression. I carry this approach originally developed to investigate the effect of oil price shocks
on stock markets over to investigate the effect of climate transition shocks. The QQ approach by
Sim and Zhou (2015) can reveal hidden features in the relationship between returns and climate
transition shocks that can remain unnoticed when using conventional methods like OLS or
quantile regression. It does this by making the effects of these shocks dependent on both the
prevailing market conditions and the sign and magnitude of climate transition shocks.

I begin this investigation by giving an overview of the quantile-on-quantile approach by Sim and
Zhou (2015). Authors such as Ullah et al. (2023) have previously used this approach to study the
impact of economic policy uncertainty on stock market returns. Subsequently, I show and discuss
the results obtained for different commodity types, industry return series, and green investment
funds. Finally, I also investigate the QQ approach’s methodical validity in the context of this
thesis.

5.2 Methodology
This section outlines the model formulated by Sim and Zhou (2015) applied to climate transition
shocks instead of oil price shocks. The quantile-on-quantile approach has the ability to relate the
quantile of returns with quantiles of climate transition shocks. Let θ denote a quantile of returns.
The QQ approach starts by postulating the quantile of returns rt as a function of shocks to the
climate transition index, as shown in Equation (34).

rt = βθ(CTIt) + νθt (34)

In Equation (34), CTIt refers to the shocks to the climate transition index, ϵCTI
t , recovered from

Equation (19). These shocks are renamed in this section to CTIt for convenience. Furthermore,
νθt is an error term with a zero θ-quantile, and βθ() is a link function that is allowed to be
unknown. Following Sim and Zhou (2015), I do this to not impose a prior on how climate
transition risks and returns are related.
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The QQ approach by Sim and Zhou (2015) continues by investigating Equation (34) in the
neighborhood of CTIτ , where CTIτ denotes the τ -quantile of climate transition shocks. This is
done to study the relationship between the θ-quantile of returns and the τ -quantile of climate
transition shocks. As βθ() is allowed to be unknown, this function is first linearized by taking a
first-order Taylor expansion of βθ() around CTIτ . This then leads to the expression given in
Equation (35).

βθ(CTIt) ≈ βθ(CTIτ ) + βθ′(CTIτ )(CTIt − CTIτ ) (35)

In Equation (35), βθ(CTIτ ) and βθ′(CTIτ ) are both indexed in θ and τ . Note that the τ -quantile
of climate transition shocks, CTIτ , is only a function of τ . Next, considering that βθ(CTIτ ) and
βθ′(CTIτ ) are both functions of θ and this CTIτ , it, in turn, means that βθ(CTIτ ) and
βθ′(CTIτ ) are functions of both θ and τ . Consequently, it is possible to rewrite βθ(CTIτ ) as
β0(θ, τ) and βθ′(CTIτ ) as β1(θ, τ). Subsequently, Equation (35) can be rewritten as Equation
(36) shown below.

βθ(CTIt) ≈ β0(θ, τ) + β1(θ, τ)(CTIt − CTIτ ) (36)

Furthermore, substituting Equation (36) into Equation (34) results in Equation (37).

rt = β0(θ, τ) + β1(θ, τ)(CTIt − CTIτ )︸ ︷︷ ︸
∗

+νθt (37)

In Equation (37), the expression given by ∗ is the conditional quantile of returns that can capture
the overall relationship between returns and climate transition shocks by examining the
dependence between their distributions, as β0 and β1 are both indexed by θ and τ .

Next, following Sim and Zhou (2015), Equation (37) is estimated to obtain estimates for β0(θ, τ)
and β1(θ, τ) by solving the following expression given in Equation (38).

min
b0,b1

n∑
t=1

ρθ[rt − b0 + b1( ˆCTIt − ˆCTIτ )]K
[Fn(CTIt)− τ

h

]
(38)

In Equation (38), ρθ is the tilted absolute value function that gives the θ-conditional quantile of rt
as the solution, ˆCTIt is the estimated counterpart of CTIt and ˆCTIτ is the empirical quantile of
CTIτ . Furthermore, following Sim and Zhou (2015), as I am interested in the locally exerted
effect of the τ -quantile of climate transition shocks, I make use of Gaussian Kernel K[·] in order
to weigh the observations surrounding ˆCTIτ . Following Sim and Zhou (2015), I make the decision
to use a plug-in bandwidth value for h equal to 0.05 in my estimations. It should be noted that,
as is standard with kernel regressions, selecting an appropriate bandwidth parameter is one of the
main challenges. The choice of bandwidth parameter involves a bias-variance trade-off. A larger
bandwidth reduces variance by providing a smoother estimate but at the cost of increased bias.
On the other hand, a smaller bandwidth reduces bias by capturing more local details, but at the
expense of increased variance.
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5.3 Results
In this section, I carry out the quantile-on-quantile approach by Sim and Zhou (2015) to
investigate the effects of climate transition risk shocks depending on different financial conditions.
I do this for a number of commodities, industry returns, and green investment funds. Of
particular interest is to see the effect of the largest climate transition shocks, as this reveals what
types of assets can become stranded assets in times of increased climate transition risks and
which types of assets can serve as safe havens for climate transition risks. I begin by examining
the effects of climate transition shocks on different commodity types.

5.3.1 Commodities

(a) Gold (b) Silver

(c) Oil (d) Natural Gas

Figure 6: Commodities QQR Slope Estimates

Figure 6 shows the estimates for β1(θ, τ) when considering the returns on several different
commodity types. These are gold, silver, oil, and natural gas. These figures show that the most
extreme positive climate transition shocks have a large negative effect on gold and silver returns
for all market conditions. Also, the largest negative climate transition shocks have a negative
effect on silver returns, but only during periods when silver returns were already high. This would
suggest that gold and silver cannot serve as safe havens against severe climate transition risks in
the same way that they can function as safe havens from uncertainty from economic policy
innovation or geopolitical risk, as Chiang (2022) found.

Furthermore, Figure 6 also reveals that for all oil market conditions, but especially for the largest
quantile of oil returns, the largest climate transition shocks are associated with increased oil
returns. This may be uncertainty regarding the long-term sustainability of oil assets, increasing
borrowing costs, and limiting access to capital for companies in the oil industry. This can, for
example, lead to cuts in production that create short-term supply constraints and subsequently
cause short-term price increases. Furthermore, for natural gas, extreme positive climate transition
shocks are only associated with higher returns when the returns on natural gas are already low.
For the other market conditions, large climate transition shocks are associated with lower returns
on natural gas. Furthermore, for all quantiles of natural gas returns, but especially when returns
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on natural gas are already low, large negative climate transition shocks are associated with
increased returns on natural gas.

5.3.2 Industry Returns

This section continues by examining the effects of climate transition shocks on the return of
different industry sectors.

5.3.2.1 Energy and Resources

(a) Oil Industry (b) Utilities

Figure 7: Energy and Resources QQR Slope Estimates

Figure 7 shows the estimates for β1(θ, τ) for firms related to oil and petroleum products and the
estimates for utility companies. First, when looking at the effect on firms in the oil industry, it is
noticeable that for all market conditions, large positive climate transition shocks are associated
with a decrease in returns for all prevailing market conditions. However, this effect is slightly
more pronounced at the lower quantiles of oil industry returns. A possible explanation is that
large climate transition shocks signal the introduction of extensive climate legislation that, for
example, has the goal of phasing out the usage of fossil fuels rendering many investments of these
companies obsolete and reducing the long-term profitability of such companies due to stranded
assets.

Furthermore, for utility companies, both large positive and negative climate transition shocks are
associated with lower returns. A possible explanation might be that these return series include
both utility companies that have already invested significantly in renewable energy sources and
companies that have not. During times of large negative climate transition shocks, utility
companies that had already been starting to transition towards cleaner energy sources may face
increased competition from cheaper fossil fuel alternatives. This can negatively impact their
market share and profitability, particularly if they have made significant investments in renewable
energy that are now less economically viable. At the same time, large positive climate transition
shocks can render investments by utility companies with major fossil investments obsolete,
reducing their profitability.

5.3.2.2 Automotive and Transportation
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(a) Automobiles (b) Transportation

Figure 8: Automotive and Transportation QQR Slope Estimates

Figure 8 shows how different quantiles of climate transition shocks affect the return of companies
in the automotive and transportation industries. When looking at the effects of climate transition
shocks on returns of the automobile sector, it is noticeable that the estimates for β1(θ, τ) are
positive for most quantiles of returns and almost all quantiles of returns. Only for the largest
positive climate transition shocks does this relationship not hold, especially for the lower quantiles
of returns where the effect is negative. This can be explained by these large positive shocks
signaling stricter emissions standards for vehicles leading to increased production costs that
reduce the profit margins for automobile manufacturers.

Furthermore, Figure 8 shows that extreme negative climate transition shocks indicating sudden
decreased climate legislative pressure are associated with increased returns for companies in the
transportation sector. In contrast, large positive climate transition shocks are associated with
decreased returns for all prevailing market conditions. This can be caused by transportation
companies being required to reduce their carbon footprint by adopting cleaner technologies, such
as electric or hybrid vehicles, or by improving fuel efficiency. This can mean that significant
investments are needed by such companies in order to be able to continue operating, which can
significantly reduce the profitability of such companies.

5.3.2.3 Manufacturing, Industrial, and Construction

Figure 9 shows the estimates for β1(θ, τ) for the returns of manufacturing, industrial, and
construction industry portfolios. Generally, negative climate transition shocks are associated with
increased returns, and positive climate shocks are associated with decreased returns for these
portfolios for all market conditions. For these industries, increased climate legislation often
requires companies to adopt new technologies, processes, and practices to reduce their
environmental impact, which can decrease profitability. A noticeable exception, however, is
mining and mineral companies. Large positive climate transition shocks for these mining
companies are only associated with lower returns with higher quantiles of returns. Instead, when
the returns of these firms are already high, large positive climate shocks are actually associated
with higher returns.
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(a) Chemicals (b) Fabricated Products

(c) Machinery and Business Equipment (d) Mining and Minerals

(e) Steel (f) Construction

Figure 9: Manufacturing, Industrial, and Construction QQR Slope Estimates

5.3.2.4 Consumer Goods and Retail

(a) Clothing (b) Consumer Products

(c) Consumer Durables (d) Retail Stores

Figure 10: Consumer Goods and Retail QQR Slope Estimates
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Figure 10 shows how different climate transition shocks affect the returns of different portfolios of
companies associated with consumer goods or retail stores. Noticeably, for all market conditions
for the different portfolios, β1(θ, τ) associated with the largest quantile of climate transition
shocks are negative. This indicates that increased climate legislation is associated with decreased
returns for these portfolios, and these types of companies are thus not safeguarded from the
effects of tightening climate legislation. A possible explanation might be that such companies may
be forced to adjust their supply chain practices substantially. Such changes can introduce
disruptions, lead to delays, and incur additional costs, ultimately impacting profitability and
returns for these companies.

5.3.2.5 Financial and Insurance

(a) Financial and Insurance

Figure 11: Financial and Insurance QQR Slope Estimates

Next, Figure 11 shows how the returns of a portfolio of financial and insurance companies react to
different sizes of shocks at various market conditions. This figure shows that large negative
climate transition shocks at all market conditions are associated with increased returns and large
positive shocks are associated with decreased returns. A possible explanation might be that
financial companies can be exposed both via decreased returns on their investment portfolios due
to lower returns of other types of firms or by financial institutions themselves facing stricter
regulations and reporting requirements, which can impact profitability and lower returns.

5.3.2.6 Food and Agriculture

(a) Food and Agriculture

Figure 12: Food and Agriculture QQR Slope Estimates

Next, Figure 12 shows how different climate transition shocks affect the returns of a portfolio of
food and agriculture companies at various market conditions. It is again noticeable how large
negative shocks at all market conditions are associated with increased returns, and large positive
shocks are associated with lower returns. This may be explained by increased climate legislation
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requiring food and agricultural companies to invest in more sustainable and environmentally
friendly farming practices that can lead to additional costs due to reducing greenhouse gas
emissions or using organic fertilizers instead of conventional methods being more expensive. This
can squeeze profit margins and reduce returns.

5.3.3 Green Investment Fund

(a) NASDAQ CLEAN EDGE GREEN
ENERGY

(b) NASDAQ OMX Green Economy

Figure 13: Green Investment QQR Slope Estimates

Finally, Figure 13 shows the estimates for β1(θ, τ) for the returns for two different green
investment funds, namely the NASDAQ Clean Edge Green Energy Index, which tracks the
performance of clean energy technology companies, and the NASDAQ OMX Green Economy
Index which tracks the performance of companies associated with the economic framework of
sustainable development across various sectors of the economy. Unlike many of the previous
industry returns, large positive climate transition shocks are actually associated with increased
returns for these investment vehicles. Increases in legislation on climate change can mean growing
market opportunities for companies involved in clean energy technology leading to increased
returns. Additionally, increased climate legislation may also positively affect the competitive
position of companies that have invested more in sustainability compared to their competitors
leading to increased returns. Overall, this finding of the good performance of green investment
funds is consistent with the finding of Cepni et al. (2022), who discover that green assets can offer
reliable, safe-haven benefits against climate uncertainty.

5.3.4 Conclusion

The quantile-on-quantile approach reveals that sudden large increases in climate transition risks
are not limited to negatively impacting firms commonly believed to be heavily affected by climate
legislation, such as energy and resources companies, automotive and transportation companies,
and manufacturing and industrial companies. Instead, financial institutions and consumer and
retail companies also see decreased returns during times of substantial climate legislative pressure.
This has considerable consequences for risk management as investing in a diversified portfolio of
different industries does not mean that exposure to climate transition risks is automatically
diversified away. Also, traditional safe-haven assets such as gold or silver are not suited for
protecting against climate transition risks. However, green investment funds do seem to react
positively to climate transition shocks, confirming findings by Cepni et al. (2022).
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5.4 Robustness Analysis
As a final step, I conclude this section by checking the validity of the quantile-on-quantile
approach. As Sim and Zhou (2015) state, the principle behind the QQ approach is to decompose
the quantile regression estimates so that they are specific to the different quantiles of explanatory
variables. Consequently, the quantile-on-quantile approach should be able to express more
information regarding the relationship between the variables of interest due to the
quantile-on-quantile approach allowing for this relationship to be heterogeneous across τ .

If the quantile-on-quantile approach is indeed able to decompose the quantile regression
estimates, then it should be possible to use the QQ estimates to recover the quantile regression
estimates. Since the quantile regression estimates are only indexed by θ, it should then be
possible to construct estimates from the quantile-on-quantile regression estimates, β̄1(θ), that are
also only indexed by θ by averaging over τ as is shown in Equation (39), where β̂1(θ, τ) represent
the obtained estimates for β1(θ, τ).

β̄1(θ) =
1

S

∑
τ

β̂1(θ, τ) (39)

To facilitate this test, I also estimate the regular quantile regression for all the different return
series by estimating Equation (40).

r̂θt = γ̂0(θ) + γ̂1(θ) · CTIt (40)

Figures A6 until A13 show for the various returns considered, the averaged over τ
quantile-on-quantile approach regression estimates, β̄1(θ) in green. Furthermore, the quantile
regression estimates for γ1(θ) are shown in red for all the different returns considered, as these
figures show that the averaged over τ quantile-on-quantile estimates seem to follow the quantile
regression generally. This simple visual manner confirms the validity of the results obtained in the
previous section.
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6 Conclusion & Discussion

Overall, the findings of this thesis emphasize the importance of taking the effects of the transition
to a more sustainable economy into account. First, this thesis contributes to existing literature
relating to the effects of climate change on financial markets by constructing a novel index of
climate transition risks using deep-learning techniques. I subsequently use this index to provide
evidence for a statistically significant climate transition risk premium in U.S. equity markets and
long-term and short-term bond markets arising in recent years. This finding related to climate
transition risks is consistent with the general intertemporal hedging hypothesis by Merton (1973),
where investors accept reduced returns on assets that serve as effective hedges against unfavorable
changes in the investment opportunity set. Furthermore, I find evidence for this index having a
negative contemporaneous correlation between changes in my climate transition index, excess
stock market returns, excess bond market returns, and macroeconomic activity. Additionally, I
find that the climate transition index has predictive power on future excess stock and bond
market returns, suggesting further that climate transition risks have asset pricing implications.

This existence of a climate transition risk premium has far-reaching consequences for financial
institutions such as banks and insurance companies. First, it shows the need to develop suitable
risk management tools and strategies to obtain the desired exposure to the climate transition’s
financial consequences. Secondly, it shows the need to properly prepare for the likely further
incorporation of climate transition risks in stress tests and ORSAs, as will likely be mandated by
regulators such as the DNB and ECB when the existence of such a risk premium is further
accepted.

Moreover, to conduct a more comprehensive analysis of the impact of climate transition risks on
various industry portfolios’ return series that can contribute to better risk management by
financial institutions, I employ the quantile-on-quantile (QQ) methodology developed by Sim and
Zhou (2015). This approach unveils that not only sectors traditionally associated with suffering
from climate transition risks, like the oil and petroleum industry, but also companies operating in
the manufacturing and consumer goods sectors experience diminished returns during periods of
heightened climate transition risks. These findings hold significant implications for risk
management strategies that financial institutions such as banks and insurance companies employ.
Additionally, this study discovers evidence indicating that green investment funds demonstrate
increased returns during periods of extreme climate transition risks, suggesting their potential
role as hedges or safe havens against such risks. This finding further emphasizes the relevance and
potential value of these assets in navigating the challenges posed by climate transition.

Finally, I will end this thesis with a discussion of some of the shortcomings of this thesis and
recommendations for future research. It should be noted that in the investigation into the
existence of a climate transition risk premium via portfolio sorts, a particular choice is made for
the length of the rolling window. Furthermore, also in the quantile-on-quantile, a particular
choice for the bandwidth parameter is made. These choices are not further investigated, and it
remains an open question whether similar results are obtained when different choices are made.
As a final note, this thesis has also only made use of U.S. newspapers in the construction of the
index and of U.S. financial markets. It thus remains open to see whether the results I obtained
are also seen in different economies and if there are potential cross-country effects.
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Appendices

Model Architecture & Performance

Figure A1: BiLSTM Architecture.
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Figure A2: Model Loss.

Figure A3: Model Accuracy.

Macroeconomic Activity

Figure A4: CFNAI
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Figure A5: Industrial Production Index

Climate Transition Risk Premium Via
Portfolio Sorts using Individual
Newspapers

Equities

WSJ

Alpha CAPM 3 Factor 5 Factor 5 Factor + Momentum

First 0.277 (0.118) 0.210 (0.100) 0.128 (0.287) 0.195 (0.100)
Second 0.089 (0.577) 0.033 (0.779) -0.086 (0.414) -0.026 (0.788)
Third -0.068 (0.640) -0.117 (0.265) -0.276 (0.002) -0.224 (0.007)
Fourth 0.003 (0.984) -0.053 (0.626) -0.226 (0.024) -0.166 (0.066)
Fifth 0.170 (0.322) 0.104 (0.449) 0.013 (0.926) 0.087 (0.509)
Spread -0.107 (0.393) -0.106 (0.392) -0.115 (0.382) -0.108 (0.412)

Table 43: Alpha Estimates 1995-2022
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CAPM 3 Factor 5 Factor 5 Factor + Momentum

FIRST -0.250 (0.251) -0.170 (0.288) -0.159 (0.306) -0.099 (0.518)
SECOND -0.184 (0.349) -0.149 (0.307) -0.164 (0.243) -0.122 (0.388)
THIRD -0.334 (0.038) -0.309 (0.011) -0.322 (0.006) -0.303 (0.013)
FOURTH -0.311 (0.042) -0.263 (0.007) -0.270 (0.005) -0.232 (0.021)
FIFTH -0.325 (0.091) -0.235 (0.072) -0.251 (0.063) -0.218 (0.115)
SPREAD -0.075 (0.711) -0.066 (0.755) -0.092 (0.669) -0.119 (0.581)

Table 44: Alpha Estimates 1995-2012

CAPM 3 Factor 5 Factor 5 Factor + Momentum

FIRST 0.693 (0.004) 0.515 (0.003) 0.367 (0.031) 0.414 (0.009)
SECOND 0.323 (0.166) 0.184 (0.302) 0.011 (0.948) 0.053 (0.710)
THIRD 0.067 (0.750) -0.049 (0.732) -0.275 (0.027) -0.237 (0.027)
FOURTH 0.080 (0.721) -0.042 (0.768) -0.290 (0.035) -0.249 (0.036)
FIFTH 0.418 (0.083) 0.275 (0.174) 0.109 (0.594) 0.160 (0.401)
SPREAD -0.275 (0.084) -0.240 (0.126) -0.258 (0.135) -0.254 (0.142)

Table 45: Alpha Estimates 2012-2022

NYT

Alpha CAPM 3 Factor 5 Factor 5 Factor + Momentum

First 0.230 (0.221) 0.165 (0.272) 0.055 (0.687) 0.133 (0.289)
Second 0.070 (0.656) 0.012 (0.914) -0.126 (0.215) -0.073 (0.440)
Third 0.007 (0.962) -0.044 (0.696) -0.189 (0.067) -0.143 (0.163)
Fourth 0.030 (0.847) -0.024 (0.835) -0.191 (0.054) -0.136 (0.147)
Fifth 0.134 (0.456) 0.070 (0.610) 0.004 (0.979) 0.085 (0.540)
Spread -0.097 (0.542) -0.096 (0.545) -0.052 (0.745) -0.048 (0.766)

Table 46: Alpha Estimates 1995-2022
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CAPM 3 Factor 5 Factor 5 Factor + Momentum

First -0.337 (0.057) -0.234 (0.149) -0.253 (0.108) -0.183 (0.256)
Second -0.251 (0.107) -0.211 (0.062) -0.207 (0.067) -0.164 (0.152)
Third -0.303 (0.078) -0.268 (0.023) -0.267 (0.016) -0.237 (0.044)
Fourth -0.202 (0.274) -0.174 (0.137) -0.186 (0.087) -0.175 (0.108)
Fifth -0.311 (0.216) -0.240 (0.139) -0.252 (0.100) -0.217 (0.191)
Spread 0.026 (0.920) -0.006 (0.978) 0.001 (0.998) -0.034 (0.888)

Table 47: Alpha Estimates 1995-2012

CAPM 3 Factor 5 Factor 5 Factor + Momentum

FIRST 0.608 (0.022) 0.445 (0.019) 0.252 (0.175) 0.303 (0.065)
SECOND 0.256 (0.268) 0.119 (0.444) -0.100 (0.510) -0.064 (0.634)
THIRD 0.176 (0.416) 0.062 (0.709) -0.165 (0.296) -0.133 (0.370)
FOURTH 0.131 (0.556) 0.007 (0.969) -0.229 (0.129) -0.187 (0.182)
FIFTH 0.411 (0.103) 0.251 (0.223) 0.163 (0.430) 0.222 (0.244)
SPREAD -0.197 (0.345) -0.194 (0.335) -0.089 (0.683) -0.081 (0.713)

Table 48: Alpha Estimates 2012-2022

WP

Alpha CAPM 3 Factor 5 Factor 5 Factor + Momentum

First 0.367 (0.057) 0.297 (0.038) 0.184 (0.173) 0.285 (0.019)
Second 0.057 (0.744) -0.004 (0.973) -0.169 (0.126) -0.091 (0.327)
Third 0.053 (0.743) -0.002 (0.983) -0.172 (0.095) -0.130 (0.201)
Fourth -0.003 (0.981) -0.057 (0.579) -0.181 (0.048) -0.135 (0.117)
Fifth -0.001 (0.997) -0.055 (0.683) -0.109 (0.414) -0.063 (0.642)
Spread -0.367 (0.017) -0.352 (0.015) -0.294 (0.056) -0.348 (0.021)

Table 49: Alpha Estimates 1995-2022
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CAPM 3 Factor 5 Factor 5 Factor + Momentum

First -0.294 (0.200) -0.185 (0.255) -0.202 (0.190) -0.096 (0.570)
Second -0.290 (0.079) -0.248 (0.034) -0.264 (0.023) -0.228 (0.051)
Third -0.218 (0.126) -0.191 (0.044) -0.204 (0.027) -0.203 (0.028)
Fourth -0.241 (0.124) -0.210 (0.050) -0.203 (0.054) -0.185 (0.064)
Fifth -0.361 (0.064) -0.293 (0.032) -0.293 (0.031) -0.264 (0.061)
Spread -0.066 (0.680) -0.109 (0.528) -0.091 (0.599) -0.168 (0.362)

Table 50: Alpha Estimates 1995-2012

CAPM 3 Factor 5 Factor 5 Factor + Momentum

FIRST 0.779 (0.003) 0.621 (0.001) 0.446 (0.018) 0.510 (0.002)
SECOND 0.266 (0.304) 0.124 (0.484) -0.138 (0.387) -0.082 (0.496)
THIRD 0.199 (0.408) 0.071 (0.651) -0.187 (0.232) -0.154 (0.300)
FOURTH 0.117 (0.561) -0.011 (0.939) -0.197 (0.149) -0.163 (0.194)
FIFTH 0.221 (0.347) 0.079 (0.703) -0.002 (0.992) 0.031 (0.879)
SPREAD -0.557 (0.013) -0.542 (0.007) -0.448 (0.046) -0.479 (0.030)

Table 51: Alpha Estimates 2012-2022

Short-Term Bonds

WSJ

(1) (2) (3)

FIRST -0.222 (0.744) 0.853 (0.284) 0.850 (0.339)
SECOND -0.685 (0.305) 0.305 (0.711) 0.507 (0.583)
THIRD -0.409 (0.522) 0.642 (0.388) 0.775 (0.360)
FOURTH -0.542 (0.417) 0.463 (0.558) 0.555 (0.528)
FIFTH -0.756 (0.234) 0.200 (0.772) 0.418 (0.594)
SPREAD -0.534 (0.003) -0.653 (0.001) -0.433 (0.038)

Table 52: Alpha Estimates 2003-2022
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(1) (2) (3)

FIRST -0.073 (0.465) 0.153 (0.200) 0.165 (0.149)
SECOND 0.035 (0.675) 0.255 (0.003) 0.264 (0.003)
THIRD -0.009 (0.900) 0.150 (0.137) 0.161 (0.109)
FOURTH 0.009 (0.900) 0.164 (0.018) 0.168 (0.014)
FIFTH -0.030 (0.739) 0.102 (0.304) 0.109 (0.246)
SPREAD 0.052 (0.255) -0.042 (0.618) -0.047 (0.549)

Table 53: Alpha Estimates 2003-2012

(1) (2) (3)

FIRST 0.231 (0.032) 0.382 (0.000) 0.382 (0.000)
SECOND 0.020 (0.646) 0.073 (0.102) 0.075 (0.095)
THIRD -0.025 (0.315) 0.003 (0.900) 0.005 (0.845)
FOURTH -0.070 (0.004) -0.052 (0.040) -0.050 (0.051)
FIFTH -0.324 (0.000) -0.296 (0.000) -0.295 (0.000)
SPREAD -0.555 (0.000) -0.679 (0.000) -0.677 (0.000)

Table 54: Alpha Estimates 2012-2022

NYT

(1) (2) (3)

FIRST -0.295 (0.646) 0.397 (0.555) 0.469 (0.494)
SECOND -0.518 (0.382) 0.191 (0.755) 0.279 (0.661)
THIRD -0.184 (0.749) 0.552 (0.386) 0.671 (0.301)
FOURTH -0.608 (0.319) 0.326 (0.564) 0.423 (0.463)
FIFTH -0.772 (0.182) 0.157 (0.776) 0.252 (0.651)
SPREAD -0.457 (0.032) -0.222 (0.503) -0.192 (0.544)

Table 55: Alpha Estimates 2003-2022

(1) (2) (3)

FIRST -0.218 (0.809) 1.118 (0.271) 1.190 (0.212)
SECOND 0.108 (0.880) 1.637 (0.018) 1.674 (0.014)
THIRD -0.079 (0.911) 1.519 (0.133) 1.624 (0.106)
FOURTH 0.296 (0.729) 2.558 (0.003) 2.652 (0.003)
FIFTH -0.719 (0.474) 1.544 (0.197) 1.653 (0.149)
SPREAD -0.506 (0.268) 0.422 (0.620) 0.467 (0.550)

Table 56: Alpha Estimates 2003-2012
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(1) (2) (3)

FIRST -0.222 (0.744) 0.853 (0.284) 0.850 (0.339)
SECOND -0.685 (0.305) 0.305 (0.711) 0.507 (0.583)
THIRD -0.409 (0.522) 0.642 (0.388) 0.775 (0.360)
FOURTH -0.542 (0.417) 0.463 (0.558) 0.555 (0.528)
FIFTH -0.756 (0.234) 0.200 (0.772) 0.418 (0.594)
SPREAD -0.534 (0.003) -0.653 (0.001) -0.433 (0.038)

Table 57: Alpha Estimates 2012-2022

WP

(1) (2) (3)

FIRST -0.220 (0.730) 0.296 (0.641) 0.349 (0.586)
SECOND -0.386 (0.502) 0.142 (0.805) 0.208 (0.722)
THIRD -0.137 (0.824) 0.411 (0.529) 0.500 (0.447)
FOURTH -0.452 (0.472) 0.243 (0.664) 0.315 (0.575)
FIFTH -0.575 (0.306) 0.117 (0.834) 0.187 (0.733)
SPREAD -0.340 (0.191) -0.165 (0.590) -0.143 (0.633)

Table 58: Alpha Estimates 2003-2022

(1) (2) (3)

FIRST -0.152 (0.807) 0.780 (0.313) 0.830 (0.284)
SECOND 0.076 (0.885) 1.142 (0.037) 1.167 (0.034)
THIRD -0.055 (0.916) 1.059 (0.179) 1.132 (0.159)
FOURTH 0.206 (0.699) 1.783 (0.009) 1.849 (0.007)
FIFTH -0.501 (0.483) 1.077 (0.363) 1.152 (0.312)
SPREAD -0.353 (0.363) 0.294 (0.675) 0.326 (0.606)

Table 59: Alpha Estimates 2003-2012

(1) (2) (3)

FIRST -0.165 (0.836) 0.635 (0.416) 0.633 (0.447)
SECOND -0.510 (0.483) 0.227 (0.766) 0.378 (0.633)
THIRD -0.304 (0.694) 0.478 (0.570) 0.577 (0.513)
FOURTH -0.404 (0.605) 0.344 (0.639) 0.413 (0.599)
FIFTH -0.563 (0.423) 0.149 (0.835) 0.311 (0.674)
SPREAD -0.398 (0.154) -0.486 (0.048) -0.322 (0.116)

Table 60: Alpha Estimates 2012-2022
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Long-Term Bonds

WSJ

(1) (2) (3)

FIRST 0.074 (0.480) 0.242 (0.018) 0.244 (0.014)
SECOND -0.020 (0.749) 0.078 (0.219) 0.085 (0.188)
THIRD -0.036 (0.480) 0.040 (0.450) 0.048 (0.371)
FOURTH -0.052 (0.282) 0.009 (0.856) 0.018 (0.717)
FIFTH -0.179 (0.017) -0.128 (0.084) -0.118 (0.118)
SPREAD -0.253 (0.000) -0.370 (0.000) -0.362 (0.000)

Table 61: Alpha Estimates 2003-2022

(1) (2) (3)

FIRST 0.039 (0.754) 0.424 (0.047) 0.427 (0.030)
SECOND -0.034 (0.643) 0.196 (0.034) 0.202 (0.031)
THIRD -0.033 (0.638) 0.153 (0.056) 0.159 (0.045)
FOURTH -0.023 (0.773) 0.127 (0.171) 0.135 (0.123)
FIFTH 0.002 (0.991) 0.101 (0.572) 0.114 (0.491)
SPREAD -0.037 (0.863) -0.322 (0.294) -0.312 (0.264)

Table 62: Alpha Estimates 2003-2022

(1) (2) (3)

FIRST 0.098 (0.436) 0.280 (0.018) 0.300 (0.029)
SECOND -0.010 (0.883) 0.094 (0.271) 0.108 (0.264)
THIRD -0.036 (0.532) 0.043 (0.562) 0.055 (0.504)
FOURTH -0.065 (0.242) 0.003 (0.962) 0.016 (0.835)
FIFTH -0.234 (0.003) -0.135 (0.115) -0.128 (0.198)
SPREAD -0.332 (0.000) -0.415 (0.000) -0.427 (0.000)

Table 63: Alpha Estimates 2012-2022

NYT
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(1) (2) (3)

FIRST 0.049 (0.398) 0.162 (0.004) 0.163 (0.002)
SECOND -0.013 (0.788) 0.052 (0.285) 0.056 (0.245)
THIRD -0.024 (0.608) 0.027 (0.566) 0.032 (0.492)
FOURTH -0.035 (0.459) 0.006 (0.897) 0.012 (0.794)
FIFTH -0.119 (0.029) -0.085 (0.117) -0.079 (0.141)
SPREAD -0.169 (0.000) -0.247 (0.000) -0.241 (0.000)

Table 64: Alpha Estimates 2003-2022

(1) (2) (3)

FIRST 0.026 (0.696) 0.282 (0.055) 0.285 (0.030)
SECOND -0.023 (0.640) 0.131 (0.116) 0.134 (0.105)
THIRD -0.022 (0.659) 0.102 (0.169) 0.106 (0.161)
FOURTH -0.016 (0.784) 0.085 (0.266) 0.090 (0.246)
FIFTH 0.001 (0.990) 0.068 (0.548) 0.076 (0.487)
SPREAD -0.025 (0.797) -0.215 (0.131) -0.208 (0.105)

Table 65: Alpha Estimates 2003-2022

(1) (2) (3)

FIRST 0.098 (0.436) 0.280 (0.018) 0.300 (0.029)
FIRST 0.066 (0.402) 0.187 (0.010) 0.200 (0.011)
SECOND -0.007 (0.917) 0.063 (0.392) 0.072 (0.352)
THIRD -0.024 (0.704) 0.029 (0.688) 0.037 (0.620)
FOURTH -0.043 (0.503) 0.002 (0.975) 0.010 (0.885)
FIFTH -0.156 (0.034) -0.090 (0.210) -0.085 (0.256)
SPREAD -0.221 (0.000) -0.277 (0.000) -0.285 (0.000)

Table 66: Alpha Estimates 2003-2022

WP

(1) (2) (3)

FIRST 0.093 (0.429) 0.303 (0.008) 0.305 (0.006)
SECOND -0.024 (0.803) 0.097 (0.334) 0.106 (0.296)
THIRD -0.045 (0.636) 0.050 (0.605) 0.060 (0.537)
FOURTH -0.065 (0.497) 0.011 (0.907) 0.023 (0.815)
FIFTH -0.224 (0.044) -0.160 (0.153) -0.148 (0.183)
SPREAD -0.317 (0.000) -0.463 (0.000) -0.453 (0.000)

Table 67: Alpha Estimates 2003-2022
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(1) (2) (3)

FIRST 0.048 (0.696) 0.529 (0.055) 0.533 (0.030)
SECOND -0.043 (0.640) 0.245 (0.116) 0.252 (0.105)
THIRD -0.042 (0.659) 0.191 (0.169) 0.199 (0.161)
FOURTH -0.029 (0.784) 0.159 (0.266) 0.168 (0.246)
FIFTH 0.002 (0.990) 0.127 (0.548) 0.143 (0.487)
SPREAD -0.046 (0.797) -0.403 (0.131) -0.391 (0.105)

Table 68: Alpha Estimates 2003-2022

(1) (2) (3)

FIRST 0.123 (0.402) 0.350 (0.010) 0.375 (0.011)
SECOND -0.013 (0.917) 0.118 (0.392) 0.135 (0.352)
THIRD -0.045 (0.704) 0.054 (0.688) 0.069 (0.620)
FOURTH -0.081 (0.503) 0.004 (0.975) 0.020 (0.885)
FIFTH -0.292 (0.034) -0.169 (0.210) -0.159 (0.256)
SPREAD -0.415 (0.000) -0.519 (0.000) -0.534 (0.000)

Table 69: Alpha Estimates 2003-2022
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Robustness Analysis QQR

Commodities

(a) Gold (b) Silver

(c) Oil (d) Natural Gas

Figure A6: QR QQR Comparison

Industry Returns

Energy and Resources
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(a) Oil Industry (b) Utilities

Figure A7: QR QQR Comparison

Automotive and Transportation

(a) Automobiles (b) Transportation

Figure A8: QR QQR Comparison

Manufacturing, Industrial, and Construction
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(a) Chemicals (b) Fabricated Products

(c) Machinery and Business Equipment (d) Mining and Minerals

(e) Steel (f) Construction

Figure A9: QR QQR Comparison
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Consumer Goods and Retail

(a) Clothing (b) Consumer Products

(c) Consumer Durables (d) Retail Stores

Figure A10: QR QQR Comparison

Financial and Insurance
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(a) Financial and Insurance

Figure A11: QR QQR Comparison

Food and Agriculture

(a) Food and Agriculture

Figure A12: QR QQR Comparison

72



Green Investment Fund

(a) NASDAQ CLEAN EDGE GREEN
ENERGY

(b) NASDAQ OMX Green Economy

Figure A13: QR QQR Comparison
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